IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 11, NOVEMBER 2023

11259

Densest Periodic Subgraph Mining
on Large Temporal Graphs

Hongchao Qin*, Rong-Hua Li

, Ye Yuan

, Yongheng Dai, and Guoren Wang

Abstract—Densest subgraphs are often interpreted as communities, based on a basic assumption that the connections inside a
community are much denser than those between communities. In a graph with temporal information, a densest periodic subgraph is
the most densely connected periodic behavior which needs to be captured. Unfortunately, the existing work do not model the densest
periodic subgraph in temporal graphs, and the current algorithms for mining the densest subgraph cannot be applied to detect the
densest periodic subgraph in the temporal networks. To tackle this problem, we propose a novel model, called the densest o-periodic
subgraph, which presents the densest periodic subgraph whose period size is o. We prove that finding the densest o-periodic subgraph
can be solved in polynomial time, but it is still challenging because the naive algorithm needs to repeatedly invoke a maximum flow
algorithm for many periodic subgraphs. To compute the densest o-periodic subgraph efficiently, we first develop an effective pruning
technique based on the degeneracy of the graph to significantly prune the number of the periodic subgraphs. Then, we present a more
efficient algorithm that can reduce the computations for the degeneracy and maximum flow. Next, we develop a greedy algorithm that
can compute the approximate densest o-periodic subgraph and achieve an approximation ratio of 1/2. Finally, the results of extensive
experiments on several real-life datasets demonstrate the efficiency, scalability, and effectiveness of our algorithms.

Index Terms—Densest subgraph, periodic subgraph, temporal graph

1 INTRODUCTION

EMPORAL networks, in which each edge is associated with
Tan interaction time ¢, are ubiquitous in real life. For
example, in a temporal social network, each edge (u,v,t)
denotes a contact between user u and user v at time ¢. In a
temporal communication network, each edge shows infor-
mation of a sender, a receiver and their communication
time. In fact, most networks are temporal due to at least one
creation time of each edge associated. In the temporal
graphs, some graph mining problems become more difficult
to solve since we need to define new concepts and design
more non-trivial methods by considering the temporal
information. There are lots of works considering temporal
information, to name but a few, Holme [1], [2] makes a col-
loquium about the novel definitions of paths, centrality
measures, cyclic patterns motifs and so on in temporal net-
work. He states that the methods and models developed for
static networks could be inapplicable or could need non-
trivial generalizations; Han et al. [3] build a temporal graph
analysis system by exploring the interesting interplay

e Hongchao Qin, Rong-Hua Li, Ye Yuan, and Guoren Wang are with the
Department of Computer Science, Beijing Institute of Technology, Beijing
100811, China. E-mail: {heqin, rhli, yuan-ye, wanggr)@bit.edu.cn.

o Yongheng Dai is with the China Academy of Electronic and Information
Technology, Beijing 100190, China. E-mail: toyhdai@163.com.

Manuscript received 27 December 2021; revised 29 November 2022; accepted
17 December 2022. Date of publication 4 January 2023; date of current version
6 October 2023.

This work was supported in part by the National Key R&D Program of China
under Grant 2020AAA0108503; in part by NSFC under Grants 62202053,
62072034, U1809206, 61932004, 62225203, U21A20516, 61732003 and
U2001211; and in part by CCF-Huawei Populus Grove Fund.

(Corresponding authors: Rong-Hua Li and Guoren Wang.)

Recommended for acceptance by S.S. Bhowmick.

Digital Object Identifier no. 10.1109/TKDE.2022.3233788

among locality, parallelism, and incremental computation
in supporting common mining tasks on temporal graph.

Periodicity is a frequently happening phenomenon for
communications in temporal networks. Animal migration
in the animal connection network [4], cell activation in the
brain neuron network [5], and biological clock in the human
activity network all exhibit periodic behaviors. In a static
network, a densest subgraph can be related to community
structure because a densest subgraph is a typical interactive
behavior in a network. However, in a temporal network, a
densest subgraph cannot represent a periodic interactive
behavior since the dense subgraph model do not consider
the temporal information on the edges. Therefore, we cannot
use the densest subgraph model to find the periodic behav-
ior such as animal migration, cell activation etc. In this man-
uscript, we seek for the periodic densest subgraph which is
a dense part and also connected periodically. This model is
helpful for finding the most densely connected and signifi-
cant periodic activities in the temporal graphs, which can be
described in the following applications.

Mining the Periodic Medical Behavior. It usually takes sev-
eral treatments to cure a disease, so the treatments for a
patient must be periodical. The hospital dataset [6] is a tem-
poral network of face-to-face contacts between patients and
health-care workers (including nurses, doctors, and admin-
istrative staffs). Inside this temporal network, there are
interactions of patient-doctor, nurse-doctor, patient-nurse
and so on. Each periodic subgraph in the temporal network
can be a possible treatment interactions. The densest peri-
odic subgraphs in this temporal network refer to the most
complex treatment process in this hospital, since the density
of this subgraph is highest. Therefore, we can seek the dens-
est periodic subgraphs to mine the periodic medical behav-
ior in a hospital interaction temporal network.

1041-4347 © 2023 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:51:18 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4364-0633
https://orcid.org/0000-0003-4364-0633
https://orcid.org/0000-0003-4364-0633
https://orcid.org/0000-0003-4364-0633
https://orcid.org/0000-0003-4364-0633
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0002-0247-9866
https://orcid.org/0000-0002-0247-9866
https://orcid.org/0000-0002-0247-9866
https://orcid.org/0000-0002-0247-9866
https://orcid.org/0000-0002-0247-9866
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
https://orcid.org/0000-0002-0181-8379
mailto:hcqin@bit.edu.cn
mailto:rhli@bit.edu.cn
mailto:yuan-ye@bit.edu.cn
mailto:wanggr@bit.edu.cn
mailto:toyhdai@163.com

11260 IEEE TRANSACTIONS

Predicting the Future Co-Operation. A densest periodic sub-
graph is more likely to model a periodic activity in the tem-
poral network. Once we identify a periodic activity, we may
predict that the same activity will appear within a regular
periodic interval. Based on this observation, we are capable
of inferring the future interactions of a group of individuals
in a co-operation temporal network such as DBLP. For exam-
ple, if four authors co-author papers continuously at years
2020, 2021, 2022. Then, we can infer that these four research-
ers are likely to coauthor papers in year 2023.

In this manuscript, we define a particular periodic and
dense pattern on temporal networks, called densest periodic
subgraph, which is the densest subgraph pattern that occurs
periodically. In the literature, a few solutions for mining
periodic subgraphs in temporal graphs have been proposed
in the past years. For example, Lahiri [7] proposes an algo-
rithm based on enumeration trees to list all the maximal
periodic subgraphs in temporal networks. However, it can
only list the maximal periodic subgraphs, but can not find
the periodic and dense subgraphs. Qin [8] puts forward an
efficient algorithm with several pruning strategies to seek
all maximal periodic cliques in temporal networks.
Although clique is a model of the dense subgraph, it is still
hard to apply the periodic clique model into practical appli-
cations since the number of the maximal periodic cliques is
exponential and the algorithm is not scalable (the problem
of mining periodic clique is NP-hard [8]). Zhang [9] models
the activity of communities as a mixture of hidden periodic
signals and proposes an optimization approach to solve it.
However, this model is difficult to optimize, so it can only
handle the graph with thousands of nodes. Thus, a better
algorithm is demanded for searching periodic and dense
subgraphs on large temporal networks.

Based on a basic assumption that the connections inside a
community are much denser than those between communi-
ties, we study the problem of mining densest periodic
subgraphs (DPS) in the temporal graph, and invent an algo-
rithm which can solve the DPS problem in polynomial time.
To the best of our knowledge, we are the first to study the
densest periodic subgraphs and propose a scalable algo-
rithm to search them.

Contributions. In this paper, we formulate and provide
efficient solutions to find the densest periodic subgraphs in
a temporal graph. In particular, we make the following
main contributions.

Novel Model. We propose a novel concept, called densest
o-periodic subgraph, to characterize the densest periodic
subgraph in temporal graphs. A o-periodic subgraph is the
subgraph that occurs periodically in the temporal graph
with the number of occurrences is o. And a densest o-peri-
odic subgraph is the densest subgraph among all the o-peri-
odic subgraphs. As for the density of periodic subgraphs,
we define it properly so that the problem can be solved in
polynomial time. Moreover, the densest o-periodic sub-
graph is a o-periodic subgraph which has the highest den-
sity, hence it is more likely to be related to the periodic
behavior in the temporal networks.

Scalable Algorithms. To search the densest o-periodic sub-
graph, the basic algorithm is to enumerate the maximal peri-
odic subgraphs first, and then invoke the maximum flow

alﬁorithm in each maximal periodic subgraph. However,
Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Down

ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 11, NOVEMBER 2023

this naive algorithm may produce numerous redundant
computations while enumerating. In order to improve the
efficiency, we first introduce o-periodic degeneracy to prune
the periodic timestamps while generating the periodic sub-
graphs. Then, we use k-core concepts to reduce the number
of candidate nodes. Next, we propose a generated graph G*
in which we can search the densest o-periodic subgraph by
calling the maximum flow algorithm only once. Finally, we
put forward a more scalable approximation algorithm that
can process a ten-million level temporal graph in seconds.

Extensive Experiments. We conduct extensive experiments
using several real-life temporal graphs to evaluate the pro-
posed algorithm under different parameter settings. The
results indicate that our algorithms significantly outperform
the baselines in terms of community quality. In addition,
through extensive experiments, we find that our methods
are highly efficient. For instance, on a large-scale temporal
graph with more than 3.2 million nodes and 12.2 million
edges, our best exact algorithm and approximate algorithm
can find the densest periodic subgraphs in 312 and 32 sec-
onds, respectively.

Organization. Section 2 introduces the preliminaries and
formulations of our problem. The basic algorithm of mining
densest periodic subgraphs is proposed in Section 3. Fur-
thermore, the algorithms with several pruning strategies
and the approximate algorithm are proposed in Sections 4
and 5. Experimental studies are presented in Section 6, and
the related work is discussed in Section 7. Section 8 draws
the conclusion of this paper.

2 PRELIMINARIES

Let G = (V,€) be an undirected temporal graph, where V
and & denote the set of nodes and the set of temporal edges
respectively. Each temporal edge e € £ is a triplet (u,v,t),
where u,v are nodes in V, and ¢ is the interaction time
between u and v. We assume that ¢ is an integer, since the
timestamp is an integer in practice.

We can extract G into a series of snapshots based on the time-
stamps. Let 7 = [{¢|(u,v,t) € £}] be the set of timestamps, and
it is a sequence [t; : tm}. Therefore, G = {Gj, GQ...Gm} such
that each snapshot G; = (V;, E;) where V; = {u|(u,v,t;) € £}
and E; = {(u,v)|(u,v, ;) € E}.

The de-temporal graph of G, denoted by G = (V, E), is a static
graph that ignores all the timestamps associated with the tem-
poral edges. More formally, for the de-temporal graph G of G,
V=V and E = {(u,v)|(u,v,t) € E}. Let N,(G) = {v|(u,v) €
E} be the set of neighbor nodes of u, and d,(G) = |N,(G)| be
the degree of u in G. A graph G’ = (V', E') is a subgraph of
G=(V,E)ifV' CVand E' C E. Asubgraph Gy = (Vs, Es) is
referred to as an induced subgraph of G if Eg = {(u,v)|u,v €
Vs, (u,v) € E}. Similarly, a temporal subgraph Gs = (Vs,Es)
is referred to as an induced temporal subgraph of G if Vs C V
and Es = {(u,v,t)|u,v € Vs, (u,v,t) € £}. For convenience, we
use the notion S C G (S C G if S # G) to indicate that S is a
subgraph of G.

Definition 1 (o-periodic time support set). Given a tempo-
ral graph G, de-temporal graph G of G and parameter o, a
o-periodic time support set of a subgraph S C G can be denoted

by PT°(S) = {t; ti} (i <=jo <=..Js), satisfying

{ sty =
loaded on January 23|202471a’t 02:5’1:18 UTC from IEEE Xplore. Restrictions apply.

QIN ETAL.: DENSEST PERIODIC SUBGRAPH MINING ON LARGE TEMPORAL GRAPHS

W

G/ GZ G3 G4 G5

(a) Snapshots of G

(b) De-temaporal Graph (c) G1 NG2NG3

Fig. 1. Running example.

tj,., — tj, is a constant which is the periodic interval and S C
Gy, foralli=1,---,0 -1

By Definition 1, we can see that the timestamps in a
o-periodic time support set form an arithmetic sequence
and the cardinality of a o-periodic time support set is
exactly equal to 0. We do not care about the periodic inter-
val, but focus on the period size o, since different periodic
behavior may occur with different periodic interval. Clearly,
there may exist many periodic support sets of size o for a
subgraph S. Derived from Definition 1, we define the
o-periodic subgraph below.

Definition 2 (o-periodic subgraph). Given a temporal graph
G, de-temporal graph G of G and parameter o, a subgraph S C
G is a o-periodic subgraph in G if there exists a o-periodic time
support set PT7(S).

By Definition 2, any o-periodic subgraph S € G has at
least one o-periodic time support set, and a subgraph S is a
maximal o-periodic subgraph if there is no other o-periodic
subgraph S’ that satisfies S C S'. Below, we define the den-
sity of the subgraph.

Definition 3 (density). The density of a graph G = (V, E),
denoted by p(G), equals to the ratio between number of the

edges and number of nodes in G, i.e., p(G) = %

Based on Definition 2 and Definition 3, the model of the
densest periodic subgraph can be defined as follows.

Definition 4 (densest o-periodic subgraph). A densest
o-periodic subgraph S (abbreviated as c—DPS) is a o-periodic
subgraph which has the largest density such that there exists no
o-periodic subgraph S’ satisfying p(S") > p(S).

Example 1. Fig. 1 a illustrates all the five snapshots of a tem-
poral graph G. Fig. 1b illustrates the de-temporal graph G
of G in Fig. 1la. For the subgraph ' = G;NG> NGy in
Fig. 1c, we can see that the time support set of G’ in G is
[1,2,3], such that G’ is a 3-periodic subgraph. However, the
density p(G’) = 13/7 and we cannot find a subgraph S C
G’ satisfying p(S) > p(G'). So, G’ is the densest subgraph
of the 3-periodic subgraph in time [1,2,3].

Problem. Given a temporal graph G, an integer o > 2, the
goal of mining the densest periodic subgraph is to compute
the densest o-periodic subgraph in G.

Challenges. One straightforward method to solve the
problem is enumerating the maximal periodic subgraphs

11261

first, and then invoking the traditional parametric flow algo-
rithm to find the densest subgraph in each maximal periodic
subgraph. Finally, picking the densest solution among all
maximal periodic subgraphs to be the c—DPS. Since the
number of the maximal periodic subgraph is bounded by
|T|?, the problem can be solved in polynomial time. How-
ever, this method is not efficient and redundant, since we
need to invoke the maximum flow algorithm on the periodic
subgraphs for O(|7|*) times, and many of the periodic sub-
graphs are similar or totally same. Another potential
approach is finding a subgraph with highest density first,
and then checking whether the subgraph is periodic.
Clearly, this approach is impracticable, because choosing
such graph with highest density is tough and we need non-
polynomial time to try all the subgraphs.

Therefore, the challenge of our problem is how to effi-
ciently enumerate all periodic subgraphs with less redun-
dant computations. In the following sections, we will
develop several novel graph reduction techniques and an
efficient enumeration algorithm to identify the densest
o-periodic subgraph.

3 THE BASIC ALGORITHM

To find the c—DPS in a temporal graph, a straightforward
way is enumerating all the o-periodic subgraph first, and
then invoking Goldberg’s parametric flow algorithm [10],
[11] to search the densest subgraphs in each o-periodic sub-
graph. Combining all the results of densest subgraphs in all
o-periodic subgraphs, a subgraph with the maximum den-
sity is the 0—DPS. Clearly, this basic algorithm is costly
because the number of o-periodic subgraphs is numerous
and the procedure of densest subgraph mining algorithm is
ineffective in large graphs. Therefore, we conduct several
powerful pruning rules which can reduce the size of the
temporal graph before performing the subgraph enumera-
tion and densest subgraph mining.

Below, we introduce a simple periodic subgraph enu-
meration method using Goldberg’s algorithm [11] to find
0—DPS in Algorithm 1. The implementation detail is shown
as follows.

Algorithm 1 first devises a new data structure, PerioSub,
to represent the set of o-periodic time support set in Defini-
tion 1. Each item PS in PerioSub is a four-tuple [s, 4,1, G'], in
which s is the start time, i refers to the time interval, [repre-
sents the current confirmed length and G’ is the current
periodic subgraph. Based on this data structure, the algo-
rithm makes use of PerioSub to maintain all the candidates
of the arithmetic sequences, Strt1' to maintain the starting
timestamps set and DPS to record the densest o-periodic
subgraph. Initially, PerioSub, Strt1" and DPS are set to be
empty (line 1). Then, the algorithm enumerates all the time-
stamps from 1 to |7 | (line 2). For each timestamp ¢, the algo-
rithm explores all the candidate arithmetic sequences in
PerioSub (line 3). For each candidate PS € PerioSub, if (t —
PS.s)%PS.i # 0, we can continue the loop, because ¢ is abso-
lutely not in the arithmetic sequence PS (line 4). Otherwise,
the algorithm can augment the arithmetic sequence PS by
adding t into it. In this case, we increase PS.l by 1, and com-
pute the intersection of the periodic snapshots (line 5). Next,
if PS.l = o, there exists a valid periodic subgraph which is

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:51:18 UTC from IEEE Xplore. Restrictions apply.

11262

recorded by PS.G'. Then the algorithm invokes procedure
DensestSub to compute the densest subgraph in PS.G’ (line
7). If the density of the densest subgraph in PS.G’ is larger
than the recorded value, the DPS will be updated (line 8).
After that, the current PS is popped from PerioSub since it
has been considered (line 9). The algorithm also applies the
current timestamp ¢ to generate a new starting timestamp
which will be used for the next iterations (lines 10-11). Since
Algorithm 1 explores all the possible arithmetic sequences,
it will search all the possible periodic subgraphs. And in
each periodic subgraph, it will call procedure DensestSub
once.

Algorithm 1. DPS-B(G, o)

Input: Temporal graph G = {G1, ...G|7|}, parameter o
Output: o—DPS in G
1: PerioSub « 0; StrtT « (; DPS «— 0;
2: fort— 1:|7|do
for PS — [s,1,l,G'] € PerioSub do
if (t — PS.s)%PS.i # 0 then continue;
PS.l— PS.Il+1; PS.G' — PS.G'NGy;
if PS.l = o then
DPS' — DensestSub(PS.G", 0, |Eps.c|);
if p(DPS') > p(DPS) then DPS — DPS';
PerioSub.pop(PS); continue;
10: for s € StrtT do PerioSub.push([s,t—s,2,Gs N Gy]);
11: StrtT — StrtT U {t};
12: return DPS;
13: Procedure DensestSub(G, [, u)
14: DS — 0;
15: while u — [> 1/|Vg|* do
16: p=(l+u)/2; Gr — Vg U{s}U{t} in which s,¢ are new
nodes;
17: for each edge (u,v) € E¢ do
18: add edges (u,v) with capacity 1 into G ;
19: foreach node w € Vi do

o

20: add an edge (s, w) with capacity |E¢| into Gr;
21: add an edge (w, t) with capacity (|Eq| +2 x p — dw(G))
into Gp;
22: Compute the minimum s-t cut in Gp, denoted by S
and T;

23 if S\ {s} # O then{DS — S\ {s};l — p;} else u — d;
24: return DS,

Procedure DensestSub uses the Goldberg’s parametric
flow algorithm, and it can find the maximal densest sub-
graph in polynomial time. The general idea of procedure
DensestSub is as follows: it first uses a binary search process
to find the optimal density (lines 15-16). In each step of the
procedure, the algorithm guesses a density p in a binary
search manner, and tries to find a subgraph G with density
larger than p (lines 15-23). Such a subgraph can be identified
by computing the minimum s-t cut in a flow network Gp
(lines 16-21). The binary search procedure can terminate in
O(logn) iterations (lines 15-16) [11]. The detailed descrip-
tion and correctness analysis of Goldberg’s algorithm can
be found in [10].

Example 2. Fig. 2 shows the process of generating the 3-
periodic subgraphs and computing the densest sub-
graph while t =2 — 4. When ¢ = 2, the start time set
StrtT" is [1,2], and the set PerioSub only has one item.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 11, NOVEMBER 2023

StrtT . :
g =301 *G;: 01 96 ‘G3QW?G1?“\(}2 7$G30G4
J'Gz le le 2G; G4l
: t=2 =3 :
®

G : LYe;
]\/iining Densest Subgraph !

Fig. 2. lllustration for Algorithm 1.

When t comes to 3, the algorithm finds one 3-periodic
subgraph in time [1,2,3] and it invokes Proc. DensestSub
to find the densest subgraph. Subsequently, the algo-
rithm enumerates all the 3-periodic subgraphs such
as subgraph in time [1,2,3],[2,3,4],[1,3,5],[3,4,5] and
SO On.

Theorem 1 (Complexity of Algorithm 1). For a temporal
graph G with |T| timestamps and de-temporal graph G =
(V. E) of G, the time and space complexzty of Algorithm 1 are

O(|T*o mnlog (=)) and O(m + n|T|>o™") respectively, in

m

whichn = |V|,m = |E|.

Proof. Recall that each timestamps of a periodic is a o-term
arithmetic sequence which can be represented as
{tisp,tivop, -+ tivop}, Where 0 < ¢ <|T|— (0 —1)p and
p > 1is a common difference. Clearly, the maximum p is

1711
%)
result, the total number of arithmetic sequences can be

[7]-1
bounded by ZL ol (I7| — op). By relaxing this formula,
we can easily derlve that the number of is bounded by
O(|T)> o 1).

Since there are O(|T|°0~") periodic subgraphs, in each
enumeration, we need total O(om) time to compute the
interactions of the snapshots for o times (line 5). Accord-
ing to [12], [13], the maximum flow of G'r for all possible
p can be computed in O(nmlog (,Z)) time, such that we
need O(nmlog(f)) to perform Proc. DensestSub There-
fore, the total time complex1ty is O(|T|*0~ (om + nimlog
(n2/m))) = O(|T o~ nmlog ().

Besides, the algorithm need to store the graph and the
storage for each periodic graph G’ can be released after
computing the densest subgraph G'. However, the maxi-
mum size of set PerioSub is O(|T|*6~"), and we can only
store the nodes in G’ to present the graph. So, the space
complexity is O(m + n|T|’o™"). O

Since i+ op <|7T|, we have i <|7|—op. As a

4 THE IMPROVED ALGORITHMS

As described in Algorithm 1, we need to enumerate all the
snapshots (line 2) in the temporal graph to generate the
periodic subgraph and invoke the maximum flow computa-
tion for many times (line 18). In this section, in order to
improve the efficiency, we propose several powerful techni-
ques to prune the unpromising nodes and even periodic
subgraph which are totally not connected with the c—DPS.
Our key idea for reduction is based on the concept of degen-
eracy. Before proceeding further, we first give the definition
of degeneracy as follows.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:51:18 UTC from IEEE Xplore. Restrictions apply.

QIN ETAL.: DENSEST PERIODIC SUBGRAPH MINING ON LARGE TEMPORAL GRAPHS

Definition 5 (Degeneracy). The degeneracy of a graph G is
the minimum integer 8 such that each subgraph S C G con-
tains a node v with degree no larger than é.

The degeneracy of G has many properties, two of which
are listed as following lemmas:

Lemma 1. For two graph G and G', the degeneracy § of graph
G' N G is no larger than the degeneracy of G’ or G.

Lemma 2 (Ref. [14]). The degeneracy & of a static graph G, is 1/
2-approximation for the density p,,,, of the densest subgraph
inG,ie.8/2 < ppu. <8

The classic degeneracy, however, cannot be directly used
to bound the density of c—DPS in temporal graphs, since
we need to consider all the o-periodic subgraphs. Below, we
introduce a novel concept, called o-periodic degeneracy,
which will be applied to bound the density of c—DPS.

Definition 6 (o-periodic degeneracy). Given a temporal
graph G and parameter o, the o-periodic degeneracy of G is the
smallest integer 8 such that every o-periodic subgraph contains
a node with degree at most 8.

Theorem 2. The o-periodic degeneracy § of a temporal graph G,
is 1/2-approximation for the density of o—DPS p,,,, in G, i.e.
8/2 S Z)77?,41,T < 8'

Proof. Suppose that @ is the o-periodic subgraph which has
the largest 8. According to Definition 6, 4 is the smallest
integer so there exists a subgraph Sca satisfying
d,b(S) =3 for each ve S. Since p(S) = ;, we can have
8/2 < Pyuay- Furthermore, for any o-periodic subgraph S
in G and each node v € S, d,(5) < 4. So, any subgraph S
satisfies that p(S) < 8. Therefore, /2 < pus < -]

Recall that in Algorithm 1, we set a lower bound and an
upper bound for the density of the c—DPS in temporal
graph G (line 7), and then try to compute the maximum
flow with using parameter of (I + u)/2 (line 15). However,
according to Theorem 2, the lower bound and upper bound
of the maximum density of o—DPS can be §/2 and § respec-
tively, in which § is the o-periodic degeneracy. In this sec-
tion, we introduce an effective method to compute 5. At
first, we introduce a new concept, k—core, which can be
applied into computing 5.

Definition 7 (k—core). Given a de-temporal graph G of G and a
parameter k, a k—core is the maximal subgraph S of G in which
the degree of each node is at least k, i.e., d,(S) > k foru € G.

Given a graph G, the degeneracy 6 is the number of the
maximum k satisfying kCore # (). The detail of procedure
Degeneracy § is shown at Algorithm 2. It first initializes the
considering subsets S with V¢, the deleting nodes queue Q
with), and Deg[u] with the degree of u inside Gg (line 1).
Then, the algorithm loops until the S is deleted to be
() (dine 9). In each loop, it captures the nodes set D with the
minimal degree, and then pushes all nodes in D into
Q (lines 3-4). Subsequently, the algorithm iteratively pro-
cesses the nodes in (). In each iteration, the algorithm pops
a node v from @ and uses D to maintain all the deleted
nodes (line 6). For each w which is the neighbor of v in Gg, if
Deg[w] > d, the algorithm reduces Deg[w]. If the revised

11263

Deg|w] is less than d, w will be peeled from the considering
nodes set S and then be pushed into @ (line 8). Next, S is
updated by the deleting nodes in D. If S is), then the algo-
rithm returns d, which is the maximal number of kCore, i.e.,
the degeneracy of G.

Algorithm 2. Degeneracy(G)

Input: Temporal graph G = {G1, ...G|7|}, parameter o
Output: c—DPSin G
1: S« Vg; Q «— 0; for u € S do Deglu] — d,(S5);
2: while True do
3: d < the minimal degree of nodes in the graph G;
4: D« {u|d,(Gg) = d}; for u € D do Q.push(u);
5. while @ # 0 do
6: v— Q.pop(); D — DU {v};
7 for w € N,(Gg) s.t. Deglw] > d do
8 Deglw] < Deg[w] — 1; If Deglw] < d then Q.push(w);
9: S~ S\ D;If S=0thenreturnd;

Theorem 3 (Complexity of Computing Degeneracy). For
a graph G = (V, E), the time and space complexity of comput-
ing G's degeneracy by Algorithm 2 are both O(m), in which

= |E].

Proof. In line 1, Algorithm 2 needs O(m) to record the
degree of all the nodes. The minimal degree of nodes
can be found in O(log|V]) (line 3). For lines 4-8, we can
observe that each edge will be considered once, so the
total time complexity of this process is O(m). Besides,
the algorithm needs to maintain the graph and sets S, Q
and Deg, which all require O(m) memory. In conclude,
the time and space complexity of Algorithm 2 are all
O(m). O

To compute the exact o-periodic degeneracy, we enumer-
ate the periodic subgraphs and invoke Algorithm 2 to com-
pute the degeneracy ¢ of each periodic subgraph, and the
max1murn 8 is the o-periodic degeneracy 8. As it needs

O(IT|*m) (see the proof of Theorem 1) to generate all the
o-periodic subgraphs, the whole process of computing &
needs time complexity of O(|7 *m2).

4.1 Algorithm of Pruning Invalid Subgraphs

In the previous subsection, we mentioned that in order to
compute o-periodic degeneracy, we need to enumerate all
the o-periodic subgraphs first, which is obviously ineffi-
cient. To avoid listing all the periodic subgraphs, we pro-
pose a pruning algorithm which considers the periodic
property on-demand. The details are provided in Algo-
rithm 3, which is abbreviated as DPS—P.

Algorithm 3 uses the similar enumeration method like
Algorithm 1 to compute the periodic subgraphs. However,
it adds timestamps set Dell" to record the time ¢ where
snapshot G; will not contain the c—DPS (line 1). We use
PerioSub to record the temp results, StrtT" to record the can-
didate start time, DPS to record the candidate c—DPS and §
to record the computed o-periodic degeneracy (line 1), then
enumerate ¢ from 1 to |7 to generate all the periodic sub-
graphs (line 2). In this algorithm, if the current ¢ is in DelT’,
it will not be considered to construct a periodic subgraph.
Subsequently, it checks the value of start, interval and

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:51:18 UTC from IEEE Xplore. Restrictions apply.

11264

length in PS to identify a periodic subgraph. Note that, it
needs to check whether the current % equals PS.,
because some timestamps may be added into Dell" before,
and they will be skipped (line 6). If we have found a peri-
odic subgraph, the algorithm uses Algorithm 2 to compute
the max periodic degeneracy § of the current periodic sub-
graph PS.G (line 9). If § is larger than the computed o-peri-
odic degeneracy 8, then § will be updated to be equaled to
8 (line 11). Concurrently, the algorithm checks whether the
degeneracy of the snapshots Gy is less than §/2 with ¢
ranges from ¢ to |T|. If Degeneracy(Gy) < 3, according to
Theorem 1, any periodic subgraph contains timestamps &'
will not have a subgraph whose density is larger than $, so
t" will be added into DelT (lines 12-13). Note that, we can
compute once and store the degeneracy of each snapshots
G, so it will not repeatedly invoke Algorithm 2. Next, in
line 14, if 8 > 225 DPS , the current periodic subgraph may
have a subgraph w1th density larger than 8. Then, the algo-
rithm invokes procedure DensestSub to compute the densest
subgraph in the current periodic subgraph. According to
Theorem 2, it invokes DensestSub with the initialized lower
and upper bound of 3 and §. If the computed densest sub-
graph DPS’ is denser than DPS, the algorithm update DPS
to be DPS’ (line 16). In the end, it removes the considered
periodic subgraph PS (line 17), and applies the current
timestamp ¢ to generate a new starting timestamp (line 18).
Finally, after ¢ ranges from 1 to |7 |, it returns DPS.

Algorithm 3. DPS—-P(G, o)

Input: Temporal graph G = {G1, ...G|7|}, parameter o
Output: c—DPSin G

1: PerioSub — 0; StrtT, DelT — 0,0; DPS — §; 5 — 0;

2: fort— 1:|7|do

If t € DelT then continue;

4: for PS « [s,1,1,G'] € PerioSub do

5 if (t — PS.s)%PS.i # 0 then continue;

6: if 15555 o£ PS.i then {PerioSub.pop(PS); continue;}

7.

8

PSl<—PSl+1 PS.G' — PS.G' N Gy;
: if PS.l = o then
9: 8 < Degeneracy(PS.G);

10: if§ > § then

11: §—5;

12: fort' —t:|7|do A

13: if Degeneracy(Gy) < § then DelT.add(t');
14: if § > p(DPS)/2 then

15: DPS' — DensestSub(PS.G’,3,6);

16: if p(DPS") > p(DPS) then DPS «— DPS';
17: PerioSub.pop(PS); continue;

18: foreach s € StrtT doPerioSub.push([s,t—s,2,Gs N Gy]);
19: return DPS;

Theorem 4 (Complexity of Algorithm 3). The worst case
time and space complexity of Algorithm 3 are the same as those
of Algorithm 1.

In the worst case, Algorithm 3 needs to invoke Proce-
dure DensestSub to compute the densest subgraph of
each periodic subgraph. However, the pruning rule
based on Algorithm 3 can reduce the computation time
greatly. The running time of Algorithm 3 is shown in
Section 6.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 11, NOVEMBER 2023

4.2 Algorithm of Putting All Together

Although Algorithm 3 is efficient in practice, it still has
three limitations. (i) It needs to perform the maximum
flow computation for many times (line 15). In the worse
case, the number of the calls of procedure DensestSub is
0(77) (44) It needs to invoke Algorithm 2 to compute the
degeneracy for the o-periodic subgraphs (line 9) and the
snapshots (line 13). In the worse case, the number of the
calls of Algorithm 2 is also O(Z-) (7i7) It needs to com-
pute the intersection of the snapshots G; for o times (line
7) to generate one o-periodic subgraph. Only this step
will take O(7%m) time.

Algorithm 4. DPS—-P+(G, 0)

Input: Temporal graph G = {G1, ...G|7|}, parameter &
Output: c—DPSin G

1: § < guess a value for the o-periodic degeneracy of G;
2: G. = {V,, E.} «— kCore(G,3);
3: PerioN « 0; StrtT, DelT «— 0,0; DPS « 0; G* «— 0;
4: fort — 1:|7|do
5: IfT € DelT then continue;
6: foreachu € V. s.t.d,(G;) > §do
7: for PN — [s,1,1] € PerioN[u] do
8: if (t — PN.s)%PN.i # 0 then continue;
9: if L5 o4 PN then {PerioN [u].pop(PN); continue;}
10: PNl — PNI+1;
11: if PN.l = o then
12: add one node {[u, PN.s, PN.i]} into G*;
13: for s € StrtT do
14: PerioNu].push([s,t—s, 2, min(d,(Gs), d,(G:))]);

15: for each node [u, s,i] € Vg do

16: forv e N, (G)s.t. [v,s,i] € Vg« do

17: if edge (u,v) in {Gy, Gopi, ...Gy1i(o-1) } then
18: add edge ([u, s, 1], [v, s,4]) into G*;

19: § — Degeneracy(G*); G* « kCore(G*,3);

20: return DensestSub(G*,3,);

21: Procedure kCore(G, d)

22: return k—core of G in which k = d;

To overcome those limitations, we propose an improved
algorithm called DPS—P+, and the striking features are as
follows. First, it does not need to enumerate the o-periodic
subgraphs, but generate one new graph with the promising
periodic nodes to record the periodic information. Second,
DPS—P+ only needs to compute the o-periodic degeneracy
and to invoke the Proc. DensestSub to compute the densest
subgraph for only once, which greatly save the computation
time. Third, to generate the new graph, it does not need to
compute any interactions of the snapshot, which makes the
process efficient. Before introducing DPS—P+, we show a
property of the c—DPS which can be applied to reduce the
temporal networks at the beginning of the algorithm.

In the last section, we prune some snapshots to speed up
the enumerations for the periodic subgraphs. However,
according to the theorem below, we can actually prune
some nodes that are definitely not contained in the c—DPS
at the beginning.

Theorem 5. Given a temporal graph G, its de-temporal graph G,
parameter o and the o-periodic degeneracy 6, all nodes in
o—DPS need to be contained in 3-Core of G.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:51:18 UTC from IEEE Xplore. Restrictions apply.

QIN ETAL.: DENSEST PERIODIC SUBGRAPH MINING ON LARGE TEMPORAL GRAPHS

Proof. According to the definition of the de-temporal graph
G, any o-periodic subgraph G’ in G must be contained in
G. So for any node v and any G, d,(G’) < d,(G). We can
know from Theorem 2 that the density of the 0—DPS in
one o-periodic subgraph G’ is at least §/2, so the density
of the induced graph from the c—DPS in G is no less than
8/2. Since ——Core is a maximal subgraph in which the
degree of each node is at least §/2, if the o—DPS is not
contained in —-Core then one node «’ in the c—DPS will
have density less than §/2. However, we can remove '
from the 0—DPS to get a subgraph with higher density,
which Violates the definition of the 6—DPS. Therefore, all
the o—DPS C -Core.]

According to Theorem 5, we can invoke the kCore algo-
rithm to reduce the graph size first, and then find c—DPS in
the reduced graph. Furthermore, the kCore structure in the
graph holds the property that each k+1-Core must be con-
tained in the kCore. So, we can store the intermediate sub-
graph, and delete the nodes or unnecessary periodic
subgraphs by a peeling algorithm. We generate a new graph
which records the periodic information from the reduced
graph. The generated graph can be defined as follows.

Definition 8 (G-star). Given a temporal graph G, parameter o
and o-periodic degeneracy 8 of G, G-star (G*) is a static gmph
in which each node is a triple [u,s,i] with d,(G;) >3, and
each edge ([u, s, i, [v,s,q]) satisfies edge (u,v,j) € G, for all
j=588+14.,8+ix (oc—1).

We can generate the G* of the temporal graph G to com-
pute the densest subgraphs. The detailed process is shown
as follows.

According to Theorem 5, Algorithm 4 first invokes modi-
fied Algorithm 3 (see Algorithm 5 in next section) to compute
a lower bound for the a—per10d1c degeneracy of G (line 1).
Then, it computes the kCore (k = $) of the de-temporal graph
G to determine the candidate nodes (line 2). Algorithm 4 uses
StrtT to record the candidate start time, DPS to record the
candidate c—DPS, DelT to record the deleted timestamps set
and a new data structure PerioN to record the periodic nodes
(line 1). Next, it enumerates ¢ from 1 to |7 | to generate a new
static graph G* which contains all the periodic nodes (lines 4-
14). In line 6, it checks whether the degree of the current node
uis no less than 5. If u’s degree meets the constraint, then the
algorithm constructs a periodic degree sequence PN for node
u (lines 7-14). Note that, it not need to compute any interac-
tions of subgraphs. Each periodic node u is recorded by
[u, PN.s, PN.i] and formated as a new node in G*, which
means that u has degree of no less than § at periodic time
[PN.s, PN.s + PN.i..PN.s + PN.i x (o — 1)] (line 12). After
all the periodic nodes are detected, the algorithm checks
whether the periodic nodes can be connected in the periodic
timestamps, and then adds the detecting edges into
G* (lines 15-18). Finally, it computes the degeneracy in G*,
reduce G* to be kCore (k = $) of G* (line 19), and invokes Proc.
DensestSub to mine the densest subgraphs in G* (line 20). The
following theorem shows that the connection between the
degeneracy and densest subgraphs in G* with the o-periodic
degeneracy and c—DPSin G.

Example 3. Algorithm 4 first computes the o-periodic
degeneracy § of G in Fig. 1a. Then, it checks the kCore of

11265
V] Ve v, [12,345] [1.2,3]
| vy [1,2.34] Vv pag
v vs [1,23,5] v e
2 Vs v (1234 P vy oo
vs [1,2,3,5] /1,35 [345]
v [1235] v vy ovs vy
vs V4 'V7 vy [1,2,3,5] vs vz
(@) De-temaporal (b) Nodes in G*
Graph

[1,23] [234] [135] [345]

Fig. 3. lllustration for Algorithm 4 (c=3).

de-temporal graph G with k= 4§ to find all the periodic
nodes and generates the G*. However, all the periodic
nodes whose degrees are no less than § is shown at Fig. 3
c. Then, it checks whether those nodes are connected in
the corresponding timestamps (lines 15-18) and generates
the final G*. We can invoke Proc. DensestSub once to find
a densest subgraph, which is the 0—DPS according to
Theorem 6.

Theorem 6. Given a temporal graph G, parameter o and a gener-
ated graph G* of G, the degeneracy and densest subgraphs in
G* equals the o-periodic degeneracy and the o—DPS in G,
respectively.

Proof. We prove the theorem by demonstrating that the
——Core of G* equals the combinations of $-Core of all the
a—perlodlc subgraphs {G'UG" U...}. Let kCore(G*, 5)
{V*, E*} and kCore({G' UG" U },%) = {V', E'}, according
to the definitions of G* and @, any node [u, s,4] in V* will
be contained in V' with time support {t,#si...t51i(0-1)}-
So, V* C V'. On the contrary, for a o-periodic subgraph G’
which contains the 0—DPS, since the —DPS will be con-
tained in —-Core of G’, any node u in the 6—DPS satisfies
that d,(j) > §/2 for j=s,5+1..s+i(c —1). So, V' C
V*. Based on Definition 8, since V' = V", E* equals FE'.
Therefore, kCore(G*,$) = kCore({G' UG" U ...},9).

Based on Theorem 5, the 6—DPS will be in 3-Core of
the periodic subgraph and the degeneracy § is the num-
ber of the maximum Fk satisfying kCore # {). Therefore,
the densest graph and the degeneracy in kCore(G*, 5) and
kCore({G' UG" U ...},$) will both be the same. 0

According to Theorem 6, Algorithm 4 returns the densest
graph in G*, which is the —DPS of G in practice.

Theorem 7 (Complexity of Algorithm 4). For a temporal
graph G = (V, &) with |T| timestamps, the de-temporal graph
of Gis G=(V,E), the time and space complexzty of Algo-

rlthm‘4| is O(m n’log(mz)) and O(m'), where n' = \T\ |V,
7P
|E-

Proof. It needs O(|T|*|E)*) to compute the a—periodic
degeneracy (line 1), and O(|E|) to compute the $-Core of
G (line 2). In lines 4-14, in worst case, the number of peri-
odic nodes [u, PN.s, PN.i] is O(m |V]), but it needs o
times (line 11) to determine a o-periodic node. So the time
complexity of constructing the o-periodic nodes are

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:51:18 UTC from IEEE Xplore. Restrictions apply.

11266
bp (d)
: (d+1)
C4

7 bd+1 (d) (d+1)./ (d+1)

(D) aq < by (d) Cs c3

: Cd+2 : c2
(D) as L n b; (d) @+ N @y

(D) ay &

(D) a1

Fig. 4. Special case which achieves the 1/2 approximation [16].

O(IT*V]). Then, the time complexity of constructing the
edges in G* is O(|E|). Furthermore, computing the dens-
est graph in G* needs O(m/n'log (%)) according to [12],
[13]. Putting all together, the the time complexity of Algo-
rithm 4 is O(m’/n'log (’T’,—/j)) Besides, the algorithm needs to
maintain the graph G*, sets PerioN and Strtl, which
require total O(m’) memory. 0

5 APPROXIMATE ALGORITHMS

Similar to the problem of traditional densest subgraph min-
ing, the problem of mining c—DPS can also be computed
by an approximation method. The EDS [14] method follows
the peeling paradigm and achieves an approximation ratio
of 1/2 to find densest subgraph in a static graph. Also,
Samir Khuller and Barna Saha [15] show an example where
the 1/2 approximation is tight for greedy peeling. Next, we
introduce approximate algorithms for seeking c—DPS in
the temporal graph G.

According to Lemma 2, the kCore in G with the maximum
k will be the 1/2-approximation answer for the densest sub-
graph. Recall theorem 2, there holds the following lemma.

Lemma 3. Given a temporal graph G, the maximum k of the
non-empty k—core in all o-periodic subgraphs, will be 1/2
approximation for density of o—DPS.

Proof. Suppose that Gisa o-periodic subgraph which has
the largest 5. According to Theorem 2, we have 3/ 2 <
p(6—DPS) < §. Since k is maximum among the non-
empty k—core in all o-periodic subgraphs, it holds k > .
So, p(6—DPS) < k. Besides, c—DPS is a o-periodic sub-
graph with the maximum density, we have p(c—DPS) >
p(k—core) > k/2. Therefore, k/2 < p(c—DPS) < k.]

Based on Lemma 3, there is a question that whether the
approximation ratio is theoretically tight. The case in Fig. 4
show that the model of the k—core with maximum £k is a
tight approximation algorithm in general.

Example 4. As shown in Fig. 4, suppose that the o-periodic
subgraph G' = BUC; U(,...Cy, in which B is a d x D
bipartite graph and C; is a clique of size d + 2. Consider
that d < < D,k — +oo, the density of G’ will be
%W — 41 However, the density of B is d{i% ~
d, which is in fact the optimal solution. The approxima-
tion algorithm will output the whole graph G’, since it
starts eliminating nodes of degree d from B, and by doing
this, it never sees a subgraph with higher density. There-
fore, this example illustrates that the 1/2 approximation

is tight.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 11, NOVEMBER 2023

Based on theorem 2, we can search the periodic sub-
graphs to find the kCore with the maximum & to be the opti-
mal approximation for c—DPS with an approximation ratio
of 1/2. The process of the algorithm can be modified by
changing lines 8-16 in Algorithm 3, as shown in Algorithm 5
below.

Algorithm 5 first repeats the process of lines 1-7 of Algo-
rithm 3 to enumerate the periodic subgraphs. Note that,
according to lemma 1, the degeneracy of graph G is no less
than that of subgraph S which satisfies S C G. So different
from Algorithm 3, in line 7 of Algorithm 5, the DelT" will be
added into time 77 if the degeneracy of G, is less than é.
Finally, the algorithm searches all the possible periodic sub-
graphs and finds one o-periodic subgraph which has the
largest degeneracy §, then it returns the kCore of this sub-
graph with k = 6.

Recall Section 4.2, we use a generated graph G* to search
the 0—DPS. However, can we use G* to find the kCore with
the maximum £ in all periodic subgraphs? The answer is
yes and Algorithm 6 shows the process of using G* to search
the 0—DPS. Similar as the proof of Theorem 6, we can prove
that given a temporal graph G, parameter o and a generated
graph G* of G, the maximum kCore in G* equals the maxi-
mum kCore in all the o-periodic subgraphs.

Algorithm 6 not need to compute o-periodic degeneracy
in line 1 (it is the final answer of the algorithm). It may guess
an integer in the range of 5-10 in practice for the o-periodic
degeneracy of G. Then, the algorithm computes the candi-
date nodes set G, by kCore(G,$) and generates periodic
nodes from G, into G*, which are similar as lines 4-18 in
Algorithm 4. Note that, all parameter § are modified into 3
according to lemma 1. Finally, the algorithm returns the
kCore in G* with the maximum k.

Algorithm 5. DPS- A4, (G, 0)

Input: Temporal graph G = {G1, ...G|7|}, parameter o
Output: Approximate c—DPS in G
1: Lines 1-7 in Algorithm 3;
2: if PS.l = o then
3: p < Degeneracy(PS.G);
4 if p > 6 then
5: 8 «— p; DPS — PS.G;
6: fort' —t:|7|do
7.
8
9

: if Degeneracy(Gy) < & then DelT.add(t');
: Lines 17-18 in Algorithm 3;
: return kCore(DPS, 5);

Algorithm 6. DPS—A,(G, 0)

Input: Temporal graph G = {G1, ...G|7|}, parameter o
Output: Approximate c—DPS in G

1: § < guess an integer for the o-periodic degeneracy of G (5-10
in practice);

2: G.={V,, E.} «— kCore(G,5); i

3: Lines 4-18 in Algorithm 4 (modify 3 to § in line 6);

4: return kCore(G*, Degeneracy(G*));

Theorem 8 (Complexity of Algorithms 5 and 6). For a
temporal graph G = (V,) with |T | timestamps, the de-tempo-
ral graph of Gis G = (V. E), the time complexity of Algorithm 5

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:51:18 UTC from IEEE Xplore. Restrictions apply.

QIN ET AL.: DENSEST PERIODIC SUBGRAPH MINING ON LARGE TEMPORAL GRAPHS 11267
TABLE 1
Statistics of Datasets

Dataset Vi=n |E| =m/ €] = dax |T] Time scale
Chess 7,301 55,899 63,689 233 101 month
Lkml 26,885 159,996 328,092 14,172 96 month
Enron 86,836 296,952 501,510 2,156 87 month
DBLP 1,729,816 8,546,306 12,007,380 5,980 78 year
YTB 3,223,589 9,376,594 12,218,755 129,819 225 day
FLK 2,302,925 22,838,276 24,690,648 28,276 197 day
MO 24,759 187,986 294,293 5,556 2,351 day

AU 157,222 455,691 549,914 7,325 2,614 day
WT 1,094,018 2,787,967 4,010,611 214,518 2,321 day
MO2 24,759 187,986 350,798 6,500 56,409 hour
AU2 157,222 455,691 631,151 8,373 62,732 hour
WT2 1,094,018 2,787,967 4,702,689 233,313 55,690 hour

and Algorithm 6 are O(|T|*m) and O(m2), respectively. The
space co lvlexzty of Algorithm 5 and Algorithm 6 are both
O(m + 5, in which n = |V|,m = |E|.

Proof. In Algorithm 5, line 1 needs O(|T|*m) time, and lines
2-7 also require O(|T|*m) time. Besides, it maintains the
temporal graph g, sets PerioSub and StrtT, so its space
complexity is O(m + L= " =)

In Algorlthm 6, hne 2 takes O(m) time, and line 3
requires O(— m) since the generated graph G* may
have 0(7
graph G*, sets PerioN and StrtT, thus its space complex-
ity is O(m m+ i =)= O(@ m). However, we can release
memories of some periodic nodes who are not in the
k—core so its memory overhead is acceptable in practice.0

m) edges. Besides, it maintains the generated

6 EXPERIMENTS

In this section, we conduct extensive experiments to evalu-
ate the proposed algorithms. We implement seven different
algorithms for comparison:

e MPC [8] is a comparison algorithm for computing
the maximum clique in the o-periodic subgraphs.

e PERC [9] is a comparison algorithm that searches
periodic communities in the temporal networks and
can optimize a model based on periodic behavior.

e DPS-B is a baseline which computes the 6—DPS
using the framework shown in Algorithm 1, but it
enumerates all periodic subgraphs to find the dens-
est subgraphs.

e DPS-P is the implementation of Algorithm 3 which
searches the c—DPS and uses the o-periodic degen-
eracy to prune the considering periodic subgraphs.

e DPS—-P+ is the implementation of Algorithm 4
which finds the 0—DPS by searching a generated
graph and requires less computation of set intersec-
tion and maximum flow mining.

e DPS-—A4, is the implementation of Algorithm 5 which
uses the pruning algorithm similar to Algorithm 3
for finding the approximate c—DPS.

e DPS-—A; is the implementation of Algorithm 6 which
uses a generated graph similar to Algorithm 4 for
find1n§ the approximate o —DPS.

Authorized license

All algorithms are implemented in Python and all the
experiments are conducted on a server of Linux kernel
4.4 with Intel Core(TM) i5-8400@3.80GHz and 32 GB
Memory. When quantity measures are evaluated, the test
was repeated over 5 times and the average is reported
here.

Datasets. We evaluate our algorithms on 12 different real-
world temporal networks. The detailed statistics of datasets
are summarized in Table 1, where d,,,, denotes the maxi-
mum number of temporal edges associated with a node, and
|T| represents the number of snapshots. All the snapshots
are simple, undirected and unweighted graphs. Chess' is a
network that represents each pair of chess players playing
game together from 1998 to 2006. Lkml' is a communication
network of the Linux kernel mailing list from 2001 to 2011.
Enron! is an email communication network between employ-
ees of Enron from 1999 to 2003. DBLP? is a collaboration net-
work of authors in DBLP from 1940 to Feb. 2018. Youtube®
(YTB for short) and Flickr! (FLK) are friendship networks of
users in Youtube and Flickr, respectively. MathOverflow® (MO),
AskUbuntu® (AU) are temporal networks of interactions on the
stack exchange web site mathoverflow.net and askubuntu.
com, respectively. WikiTalk® (WT) is a temporal network repre-
senting the interactions among Wikipedia users. Unlike MO,
AU, WT collect snapshots by day, MO2, AU2, WT2 are trans-
formed graphs of MO, AU, WT which generate snapshots by
hour, so their |7'| are much larger.

Goodness Metrics. Most existing metrics (e.g., modularity)
for measuring the dense subgraph quality are tailored for
traditional graphs. Motivated by density, cohesiveness, cluster-
ing coefficient and separability [17], we introduce two good-
ness metrics evaluating communities for temporal graphs.
Let C be a dense subgraph computed by different
algorithms.

Average Separability (AS) captures the intuition that a good
community is well-separated from the rest of the network,
meaning that they have relatively few across edges between

C and the rest of the network: AS £, SE({L(LJpSS;EgCUi?‘O/}ﬂ 5l

which measures the ratio between the internal average den-
sity and external average density.

1. http:/ /konect.cc/
2. https:/ /dblp.uni-trier.de/xml/
3. http:/ /snap.stanford.edu/data/index.html

use Ilmlted to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:51:18 UTC from IEEE Xplore. Restrictions apply.

mathoverflow.net
askubuntu.com
askubuntu.com
http://konect.cc/
https://dblp.uni-trier.de/xml/
http://snap.stanford.edu/data/index.html

11268 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 11, NOVEMBER 2023
TABLE 2
Evaluation Methods for the Dense Subgraphs in Temporal Graph
Metric Formulation Intuition
AS {(up.t)eEueCreC}/|C] #temporal edges inside community C/ #temporal edges outside C'
[S={(uv,t)e€ucCw ¢ C}|/|S|

Zv eC deg, Gc ()
AD gil - }

AC ,ec MATSCC, ¢(S)

ACC D il

F#edge(N(v;
ZUJ’EC dc(vj)

sum of nodes’ degrees inside community C' / #nodes in C
maximum cut-edges which can split community C into S'and C'\ S

avgy;ec(#common neighbors of v;/ #temporal degree of v; inside C)

Average Density (AD) builds on intuition that good commu-
nities are well connected. It measures the fraction of the tempo-
ral ed§es that appear between the nodes in C: AD£

[%] where degg,. (v;) denotes the number of tempo-

ral edges that are associated with v; in the community C.

Average Cohesiveness (AC) characterizes the internal struc-
ture of a community. Intuitively, a good community should
be internally well and evenly connected, i.e., it should be rel-
atively hard to split a community into two sub communities.
We characterize this by the conductance of the internal cut
and adapt it into temporal graph: AC2 3~ .. mazscc,#(S),
where ¢(5) is the conductance of S measured in the induced
temporal subgraph by S.

Average Clustering Coefficient (ACC) is based on the prem-
ise that network communities are manifestations of locally
inhomogeneous distributions of edges, because pairs of
nodes with common neighbors are more likely to be con-

nected with each other: ACC £ Z,Uj e #Edqfléw /|C|, where

#edge(N(vj,C)) is the number of temporal edges in C
whose two end nodes are v;’s neighbors and d¢(v;) denotes
the number of temporal edges that are associated with v; in
the dense subgraph C.

Table 2 shows the brief introductions of the above evalu-
ation metrics. As shown, AS measures the ratio between the
number of temporal edges inside community C' and the
number of temporal edges outside C; AD measures the ratio
between the sum of nodes’ degrees inside community C
and the number of nodes in C; AC is the maximum number
of cut edges which can split community C into S and C'\ S;
ACC is the average value of the ratio between the number of

TABLE 3
Running Time (s) of Different Algorithms (INF: > 3 hours)

Dataset MPC PERC DPS—B DPS—P DPS-P+ DPS-—A; DPS-A4,
Chess 1145 2145 8.32 1.32 0.78 0.30 0.40
Lkml 3506 4523 2032 104 9.21 3.23 2.36
Enron 56.19 1042 7832 3341 13.54 4.21 3.25
DBLP 40523 1602.32 572.54 28732 155.34 4228 28.95
YTB 306.53 2653.23 1123.13 559.52 226.92 72.28 67.43
FLK 417.53 3234.23 132332 766.4 32221 172.28 78.52
MO 835.06 6713.241 2445.14 1000.23 434.19 30.15 13.71
AU 1203.32 10232.23 3121.31 1599.78 766.89 53.32 23.36
WT 2203.32 inf 8021.31 4865.87 1445.23 130.15 57.65
MO2 inf inf inf 450823 1834.19 430.15 116.45
AU2 inf inf inf 8599.78 3458.89 613.32 238.24
WT2 inf inf inf inf 10543.32 1030.15 557.65

common neighbors of v; in C' and the number of temporal
degree of v; inside C. Unless otherwise specified, in the fol-
lowing effectiveness testings, the evaluation values are nor-
malized so each maximum single value is 1.

6.1 Efficiency Evaluation

Exp-1. Running Time of All the Algorithms. Table 3 evaluates
the running time of MPC, PERC, DPS—B, DPS—P, DPS—P+,
DPS-A; and DPS—A; with parameters § = 3. Similar results
can also be observed with the other parameter settings.
From Table 3, it is obvious that DPS—P+ is much more effi-
cient than MPC, PERC on all datasets. This is because
DPS— P+ can compute the 0—DPS in O((n *logn') where
n/ IT\ x |V|, which is much quicker than the current algo-
rithms MPC and PERC. Compared with DPS—B and DPS—P,
DPS- P+ is also much faster because it prunes the enumera-
tions of the periodic subgraphs and it overcomes some limi-
tations as discussed in Section 4.2. However, since the time
complexity of the algorithm DPS—P+ is proportional to the
square of |T'|, the algorithm still has some performance defi-
ciencies when |T'| is too large. We can see that it needs about
10 thousands seconds to run DPS—P+ in WT2, but it only
needs about 1 thousand seconds in WT (WT2 have same
nodes as WT, but WT2 generate snapshots by hour so it has
lager |T'|). Moreover, the two approximation algorithms
DPS—A; and DPS-A,, perform better than the best exact
algorithm DPS—P+. It is the reason that DPS—A; and
DPS—A; not need to invoke the maximum flow computa-
tion, which is quite time-consuming in practice. However,
DPS—A, is much faster than DPS—A; on almost all datasets,
because DPS—A; needs to compute the interactions of the
snapshots. According to Table 3, our proposed algorithms
are efficient to mine the c—DPS in large temporal networks.
For example, on YTB, DPS— P+ takes 226.92 seconds and the
approximation algorithm DPS—A; only consumes 67.43 sec-
onds. On WT, we can see that MPC takes 2,203 seconds, and
PERC takes more than 3 hours, but our proposed DPS—P+
takes merely 1,445 seconds and MBC+ only takes 57 seconds.
These results confirm that our proposed algorithms are very
efficient on large real-life temporal networks.

Exp-2. Running Time of Varying the Parameter o. Fig. 5
shows the running time of DPS-B5, DPS—P and DPS-P+
during varying parameter ¢ on Enron and DBLP. Similar
results can also be observed on other datasets. It can be seen
from Fig. 5 that DPS— P+ is faster than DPS—5 and DPS—P
under all parameter settings. In Fig. 5b, we can see that the
running time of DPS—P+ decreases faster when o ranges
from 3 to 7 than o ranges from 7 to 9. This is because that

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:51:18 UTC from IEEE Xplore. Restrictions apply.

QIN ETAL.: DENSEST PERIODIC SUBGRAPH MINING ON LARGE TEMPORAL GRAPHS

& DPS-B
100 ~&- DPS-P

80 —¥— DPS-P+

40

20"‘*—*““_,
3456 7 8 91011

Running time (s)
o
=)

34567 8 91011

(b) DBLP

(a) Enron

Fig. 5. Running time of varying the parameter o.

the time complexity of the algorithm DPS—P+ is inversely
proportional to o, and the pruning technique will be less
powerful when o is smaller. With the increase of o, the run-
ning time of all the three algorithms decreases. These results
confirm that the time complexity of DPS—B, DPS—-P and
DPS— P+ are inversely proportional to o.

Exp-3. Scalability of All the Algorithms. Fig. 6 shows the
scalability of DPS—B, DPS—P and DPS—P+ on WT dataset.
Similar results can also be observed on other datasets. We
generate ten temporal subgraphs by randomly selecting
10%-100% temporal edges or 10%-100% timestamps, and
evaluate the running times of DPS—B, DPS—P and DPS—P+
on these subgraphs. As shown in Fig. 5, the running time
increases smoothly with increasing number of edges or size
of |7|. These results suggest that our proposed algorithms
are scalable when handling large temporal graphs.

Exp-4. Memory Overhead. Table 4 shows the memory
usage of DPS—P and DPS— P+ on different datasets. We can
see that the memory usage of DPS— P+ is higher than the
size of DPS—P, because DPS—P only needs to store PerioSub
in Algorithm 1 and 3 but DPS—P+ needs to store all the
periodic nodes PerioN in Algorithm 4. In practice, when
executing Algorithm 4, we can release memories of some
periodic nodes who are not in the k—core (line 19). There-
fore, on large datasets, the memory usage of DPS—P+ is
typically smaller than ten times the size of the temporal
graph. For instance, on WT, DPS—P+ consumes 2,923.2MB
memory while the graph needs 354.3MB. These results indi-
cate that DPS—B, DPS—P and DPS—P+ all achieve nearly
linear space complexity, which confirms our theoretical
analysis in Section 4.

6.2 Effectiveness Evaluation

Exp-5. Effectiveness of MPC, PERC and DPS—P+ Fig. 7 shows
the four goodness results of the model MPC, PERC and
DPS—P+ with o =3 on all the datasets. We only choose
DPS—P+ for comparison because DPS-B, DPS—F and
DPS—P+ all output c—DPS so they have the same results.
Intuitively, a good periodic community should have high

—- DPS-B —m- DPS-B
-0 DPS-P ,| ~@ DPs-P
104/ —¥— DPS-P+ 10

P S
;”;;"

20% 40% 80% 100%

Running time (s)
Running time (s)

ﬁ

20% 40% 80% 100%

n
o
W
=
o
W

(a) percents of edges (b) percents of |T|

Fig. 6. Scalability of the algorithms.

11269
TABLE 4
Memory Overhead of DPS— P and DPS—- P+
Graph in Memory Memory
Memory of DPS—P of DPS—P+
Chess 3.5MB 13.2MB 58.2MB
Lkml 20.1MB 47 4MB 146.2MB
Enron 53.3MB 127.6Mb 353.2MB
DBLP 1,064.5MB 2,532.2MB 4,324.4MB
YTB 718.5MB 1,561.5MB 3,425.8MB
FLK 1,412.1MB 3,424.2MB 5,802.1MB
MO 14.32MB 46.68MB 108.45MB
AU 64.22MB 167.50MB 580.8MB
WT 354.3MB 1074.56MB 2,923.2MB
MO2 51.53MB 45.23MB 92.75MB
AU2 155.96MB 150.32MB 459.2MB
WT2 1342.3MB 1023.23MB 2,923.2MB

AS, AD, AC and ACC values. As can be seen, DPS— P+ is obvi-
ously better than the two baselines in terms of AS, AD, AC
and ACC metrics. The reason is that DPS— P+ seeks the most
densest periodic subgraphs which certainly have the best
average density (AD). In addition, with the higher inner den-
sity, DPS—P+ is hard to be separated and it has higher AS,
AC and ACC. We can also find that PERC is much better than
MPC in terms of all the metrics. This is because that the real

XY MPC

EEm PERC 7zZ DPS-P+

S MPC mmm PERC ZzzZ DPS-P+

Xy MPC I PERC wzz4 DPS-P+

Y MPC B PERC DPS-P+

(d) ACC

Fig. 7. Effectiveness of the algorithms.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:51:18 UTC from IEEE Xplore. Restrictions apply.

11270

TABLE 5
Effectiveness of DPS— P+, DPS—A; and DPS-A, (o = 3)

P = p(DPS—P+) Py = p(DPS—Al/DPS—Ag) £2

Pl

Chess 5.6 45 80.4%
Lkml 9.4 8.4 89.4%
Enron 8.3 7.2 86.8%
DBLP 13.2 11.2 84.9%
YTB 15.3 13.6 88.9%
FLK 14.8 12.4 83.8%
MO 8.5 6.9 81.2%
AU 7.6 53 69.7%
WT 94 7.3 77.7%
MO2 4.5 3.5 77 .8%
AU2 3.7 3.1 83.7%
WT2 7.5 6.0 80.0%

periodic cliques in the temporal networks are always too
small, so the MPC can not output a subgraph of large size.
As shown in Figs. 7a, 7b, 7c, and 7d, we can observe that the
AS, AD, AC and ACC values in FLK are larger than in the other
datasets, this is because the dataset FLK ranks top in terms of
data size and density. Interestingly, the AS, AD and ACC in
Lkml are obviously better than in the other datasets (expect
in FLK), but the AC value in Lkml is slightly larger. It is the
reason that although Lkml has larger density, the graph size
in Lkml is small such that the conductance of the internal cut
is not large in Lkml.

Exp-6. Effectiveness of DPS—P+, DPS—A; and DPS—A,.
Table 5 shows the density results of the approximation algo-
rithms DPS-A; and DPS-A4; V.. the exact algorithm
DPS—P+. The first column p, is the density of the output of
algorithm DPS—P+, the second column p, is the density of
the output of algorithm DPS—A; (or DPS— A, since they out-
put the same results), and the third column is the percent-
age value of p,/p;. We can see that in all the testings, the
density of the output of DPS—A;/DPS—A, achieve 1/2
approximation since all p,/p; are inside the range of 50% —
100%. In practice, the approximation algorithms perform
great since they almost achieve the 80% percentage of the
optimal answer. The above results indicate the theoretical
analysis in Section 5 and show that the approximation algo-
rithms achieve better than the theoretical approximation
ratio in the real datasets.

Exp-7. Case Study on HOSPITAL. The dataset HOSPITAL® is
the temporal network of face-to-face contacts between
patients and health-care workers in a hospital at Lyon,
France, from Monday, December 6, 2010 at 1:00 pm to Fri-
day, December 10, 2010 at 2:00 pm. It includes 46 health-
care workers (the doctors, nurses and administrative staffs
are labeled as MED, NUR and ADM, respectively) and 29
patients (labeled as PAT). In this experiment, we set the
time interval to be one hour. Next, we will show mining the
densest periodic subgraph can help to seek the periodic
treatments in the HOSPITAL dataset. In real-life, the treat-
ment of a disease often takes several courses of treatments,
so the interactions between doctors and patients are often
periodic. Therefore, mining the periodic and densest sub-
graph can help to find the information about these periodic

4. http:/ /www.sociopatterns.org/datasets/hospital-ward-
dynamic-contact-network /

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 11, NOVEMBER 2023

PAT pAT PAT
PAT

PAT PAT
ADM ADM

PAT

PAT PAT PAT NUR
NUR

PAT PAT

NUR
PAT PAT

(a) The densest subgraph in (b) The o-DPS (o = 5)

the de-temporal graph

Fig. 8. Case study on HOSPITAL.

treatments. At first, as can be seen in Fig. 8a, we seek the
densest subgraph in the de-temporal graph, which is a most
possible community in the interaction networks between
the health-care workers and the patients. In Fig. 8a, as we
do not consider the temporal information, the resulting
community involves almost all the users (the dataset con-
tains 75 users but Fig. 8a contains 70 users), so we are hard
to identify the activity of the possible periodic treatments in
the networks. However, in Fig. 8b we seek the densest o-peri-
odic subgraph with ¢ = 5, which shows a subgraph with 5
nodes of ADM, 3 nodes of MED, 6 nodes of NUR and 7 nodes
of PAT. We also find that the health-care workers and the
patients are periodically contacted at December 8, 2010 from
10:00 am to 14 pm. Therefore, the densest o-periodic sub-
graph in Fig. 8b is more likely to be a periodic treatment at
December 8, 2010 among doctors, nurses administrative
staffs and patients in the hospital. The results indicates that
our model can find the periodic medical behavior in the hos-
pital contact temporal network.

7 RELATED WORK

In this section, we summarize the existing related algo-
rithms for identifying densest periodic subgraphs in the
temporal graph, which is related to the references below.
Densest Subgraph in Static Graph. Finding the densest sub-
graphs in static graph is a well-studied graph mining prob-
lem. It is well known that Goldberg’s parametric flow
algorithm [10] can find the maximal densest subgraph in
polynomial time by invoking O(log n) max-flow computa-
tions. Moreover, as shown in [14], a linear time greedy algo-
rithm proposed by Asashiro et al. [18] can obtain a 1/2-
approximation densest subgraph. However, when we restrict
the size of the densest subgraph [15], [19] or redefine the con-
sidered density [20], the problem becomes NP-hard. For
example, one recent work [21] proposes a nearly-linear-time
algorithm to appropriately restrict the size of the densest sub-
graph by defining a concave function. Moreover, if the den-
sity is redefined as d' = |E|/ Cfv‘, finding the subgraph with
the largest d' is to find the maximum clique, which is known
to be NP-hard [22]. Another interesting variant of the densest
subgraph model, termed optimal quasi-clique, based on a
new definition of the density function, is also NP-hard [23].
In addition to the above studies, there are related work on
other models based on various graph properties [11], [13],
[16], [24], [25], [26], [27], [28]. In our work, we study the

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:51:18 UTC from IEEE Xplore. Restrictions apply.

http://www.sociopatterns.org/datasets/hospital-ward-dynamic-contact-network/
http://www.sociopatterns.org/datasets/hospital-ward-dynamic-contact-network/

QIN ETAL.: DENSEST PERIODIC SUBGRAPH MINING ON LARGE TEMPORAL GRAPHS

problem of mining the densest subgraphs which occur in
temporal graphs periodically and proposed unprecedented
targeted solutions.

Densest Subgraph in Non-Static Graph. Recently, some
researches study the problem of mining densest subgraph
in non-static graph. Some of the studies maintain the dens-
est subgraph in a highly dynamic graphs [29], [30], [31]. By
capturing the dynamic property, we can have fast algo-
rithms for approximation factors better than 1/2. One
approach towards this is to sparsify the graph in a way that
maintains subgraph densities within a factor of 1 — ¢, and
run the exact algorithm on the sparsifier [32], [33]. A second
approach is via numerical methods to solve positive LPs
approximately [34], [35] which can find an (1 — €)-approxi-
mate solution. Others, including our work, focus on mining
the densest subgraph with temporal features [36], [37], [38],
[39], [40], [41]. For example, Liu et al. [36] studied the prob-
lem of finding densest lasting-subgraphs in large dynamic
graphs, which considered the time duration of the subgraph
pattern. Ma et al. [37] investigated the densest subgraph
mining problem in weighted temporal graphs. Rozenshtein
et al. [39] searched for a partition of the timestamps into k
non-overlapping intervals, so that the intervals span sub-
graphs with maximum total density. Miyauchi et al. [40]
proposed the model of robust densest subgraph with sam-
pling oracle in temporal networks. Chu et al. [41] devised
an algorithm which can find a subgraph that accumulates
its density at the fastest speed in temporal networks. Unlike
all these studies, in our work, we propose a model which
aims to find densest periodic subgraphs in temporal graphs.
Based on our model, we are able to identify all the periodic
and densest regions of a temporal graph in polynomial
time, which cannot be found by the above models.

Other Community Models in Temporal Graph. In addition to
the above two categories, there are several related works on
other cohesive subgraph mining models in temporal
graphs [42], [43], [44], [45], [46], [47], for example: (i) Temporal
Core Model: Galimberti et al. [42] proposed temporal span-
cores, in which each node has minimum degree in a specific
time interval; Wu et al. [48] studied the core decomposition
problem in temporal networks; Yu et al. [49] computed the
historical k-cores in the graph snapshots over the time win-
dow; Li et al. [43] developed an algorithm to detect persistent
cores in a temporal graph. (i) Temporal Clique Model: Qin
et al. [8] proposed a model for seeking periodic cliques in a
temporal graph. Yang et al. [50] studied a problem of finding
a set of diversified quasi-cliques from a temporal graph. (iii)
Temporal Subgraph Model: Yang et al. [51] proposed an algo-
rithm to detect frequent changing components in temporal
graph; Huang et al. [52] investigated the minimum spanning
tree problem in temporal graphs; Gurukar et al. [53] pre-
sented a model to identify the recurring subgraphs that have
similar sequence of information flow. However, the above
works do not study the problem of mining densest periodic
subgraph in temporal graphs.

8 CONCLUSION

In this work, we study the issues of mining densest peri-
odic subgraphs, which is the most densely connected
periodic behavior in a temporal graph. We propose a

11271

novel model, called densest o-periodic subgraph, to char-
acterize the densest periodic subgraph in a temporal
graph. To find it, we first develop a basic algorithm
which can enumerate all the periodic subgraph and then
invoke maximum flow algorithm to search the densest
subgraph. Then, we present an improved algorithm with
several novel pruning techniques to improve the effi-
ciency. Subsequently, we develop a greedy algorithm
which can compute the approximate densest o-periodic
subgraph. The experimental results on several real-life
temporal networks demonstrate the efficiency, scalability
and effectiveness of our algorithms.

There are a lot of problems to be solved in the future, to
name but a few: (i) We can observe that a slight insertion or
deletion of edge may not change the periodic subgraph. As
a result, in the future we can study the problem of main-
taining the densest periodic subgraph in fully dynamic
graphs. (i) We can consider to find the densest subgraph
which is quasi-periodic. In real life, the events are always
quasi-periodically, which means the time intervals between
two adjacent events are near to a constant. For example,
every-year birthday parties are usually celebrated with an
interval of 365 days, but there also has an interval of 366
days when considering the leap years; monthly meetings
are usually held at intervals of 28 to 31 days, because the
number of days included in each month is not fixed, but
we usually hold monthly meetings on a fixed day. As a
result, it is significant to mining the quasi-periodic densest
subgraph in the temporal network, since it can represent
more periodic behavior in real life.

REFERENCES

[1] P. Holme, “Modern temporal network theory: A colloquium,”
Eur. Phys.]. B, vol. 88, no. 9, pp. 1-30, 2015.

[2] P. Holme, “Analyzing temporal networks in social media,” Proc.
IEEE, vol. 102, no. 12, pp. 1922-1933, Dec. 2014.

[3] W.Han etal., “Chronos: A graph engine for temporal graph ana-
lysis,” in Proc. Eur. Conf. Comput. Syst., 2014, pp. 1:1-1:14.

[4] Z. Li, B. Ding, J. Han, R. Kays, and P. Nye, “Mining periodic
behaviors for moving objects,” in Proc. ACM SIGKDD Int. Conf.
Knowl. Discov. Data Mining, 2010, pp. 1099-1108.

[5]]. K. Bizley, K. M. M. Walker, A. J. King, and J. W. H. Schnupp,
“Neural ensemble codes for stimulus periodicity in auditory
cortex,” J. Neurosci., vol. 30, no. 14, pp. 5078-5091, 2010.

[6] P. Vanhems et al., “Estimating potential infection transmission
routes in hospital wards using wearable proximity sensors,” PLoS
One, vol. 8,2013, Art. no. €73970.

[7]1 M. Lahiri and T. Y. Berger-Wolf, “Periodic subgraph mining in
dynamic networks,” Knowl. Inf. Syst., vol. 24, no. 3, pp. 467497,
2010.

[8] H. Qin, R. Li, G. Wang, L. Qin, Y. Cheng, and Y. Yuan, “Mining
periodic cliques in temporal networks,” in Proc. IEEE Int. Conf.
Data Eng., 2019, pp. 1130-1141.

[9] L. Zhang, A. Gorovits, and P. Bogdanov, “Perceids: Periodic
community detection,” in Proc. IEEE Int. Conf. Des. Mining,
2019, pp. 816-825.

[10] A. V. Goldberg, “Finding a maximum density subgraph,” EECS
Dept., Univ. California, Berkeley, CA, USA, Tech. Rep. UCB/
CSD-84-171, 1984. [Online]. Available: http://www2.eecs.
berkeley.edu/Pubs/TechRpts /1984 /5956.html

[11] L. Qin, R. Li, L. Chang, and C. Zhang, “Locally densest subgraph
discovery,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2015, pp. 965-974.

[12] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan, “A fast parametric
maximum flow algorithm and applications,” SIAM]. Comput.,
vol. 18, no. 1, pp. 30-55, 1989.

[13] L. Chang and M. Qiao, “Deconstruct densest subgraphs,” in Proc.
Int. World Wide Web Conf., 2020, pp. 2747-2753.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:51:18 UTC from IEEE Xplore. Restrictions apply.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/1984/5956.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1984/5956.html

11272

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371

M. Charikar, “Greedy approximation algorithms for finding dense
components in a graph,” in Proc. Int. Workshop Approximation Algo-
rithms Combinatorial Optim., 2000, pp. 84-95.

S. Khuller and B. Saha, “On finding dense subgraphs,” in Proc. Int.
Colloq. Automata, Lang. Program., 2009, pp. 597-608.

D. Boob et al., “Flowless: Extracting densest subgraphs without
flow computations,” in Proc. Int. World Wide Web Conf., 2020,
pp- 573-583.

J. Yang and J. Leskovec, “Defining and evaluating network com-
munities based on ground-truth,” in Proc. Int. Conf. Des. Mining,
2012, pp. 745-754.

Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama, “Greedily find-
ing a dense subgraph,” J. Algorithms, vol. 34, no. 2, pp. 203-221, 2000.
R. Andersen and K. Chellapilla, “Finding dense subgraphs with
size bounds,” in Proc. Int. Workshop Algorithms Models Web-Graph,
2009, pp. 25-37.

A. Faragé and Z. R. Mojaveri, “In search of the densest subgraph,”
Algorithms, vol. 12, no. 8, 2019, Art. no. 157.

Y. Kawase and A. Miyauchi, “The densest subgraph problem with
a convex/concave size function,” Algorithmica, vol. 80, no. 12,
pp. 3461-3480, 2018.

Z. Ertem, E. Lykhovyd, Y. Wang, and S. Butenko, “The maximum
independent union of cliques problem: Complexity and exact
approaches,” J. Glob. Optim., vol. 76, no. 3, pp. 545-562, 2020.

C. E. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and M. A. Tsiarli,
“Denser than the densest subgraph: Extracting optimal quasi-cli-
ques with quality guarantees,” in Proc. Int. Conf. Knowl. Discov.
Data Mining, 2013, pp. 104-112.

B. Sun, M. Dansich, T. H. Chan, and M. Sozio, “KClist++: A simple
algorithm for finding k-clique densest subgraphs in large graphs,”
Proc. VLDB Endowment, vol. 13, no. 10, pp. 1628-1640, 2020.

Y. Fang, K. Yu, R. Cheng, L. V. S. Lakshmanan, and X. Lin,
“Efficient algorithms for densest subgraph discovery,” Proc.
VLDB Endowment, vol. 12, no. 11, pp. 1719-1732, 2019.

A. E. Sariyiice and A. Pinar, “Fast hierarchy construction for dense
subgraphs,” Proc. VLDB Endowment, vol. 10, no. 3, pp. 97-108, 2016.
A. E. Sariytice, C. Seshadhri, and A. Pinar, “Local algorithms for
hierarchical dense subgraph discovery,” Proc. VLDB Endowment,
vol. 12, no. 1, pp. 43-56, 2018.

C. Ma, Y. Fang, R. Cheng, L. V. S. Lakshmanan, W. Zhang, and X.
Lin, “Efficient algorithms for densest subgraph discovery on large
directed graphs,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2020, pp. 1051-1066.

A. Epasto, S. Lattanzi, and M. Sozio, “Efficient densest subgraph
computation in evolving graphs,” in Proc. Int. World Wide Web
Conf., 2015, pp. 300-310.

A. Angel, N. Koudas, N. Sarkas, and D. Srivastava,, “Dense sub-
graph maintenance under streaming edge weight updates for
real-time story identification,” Proc. VLDB Endowment, vol. 5,
no. 6, pp. 574-585, 2012.

S.Sawlani and J. Wang, “Near-optimal fully dynamic densest sub-
graph,” in Proc. Annu. ACM SIGACT Symp. Theory Comput., 2020,
pp. 181-193.

M. Henzinger, S. Krinninger, D. Nanongkai, and T. Saranurak,
“Unifying and strengthening hardness for dynamic problems via
the online matrix-vector multiplication conjecture,” in Proc. Annu.
ACM SIGACT Symp. Theory Comput., 2015, pp. 21-30.

S. Bhattacharya, M. Henzinger, D. Nanongkai, and C. E. Tsoura-
kakis, “Space- and time-efficient algorithm for maintaining dense
subgraphs on one-pass dynamic streams,” in Proc. Annu. ACM
SIGACT Symp. Theory Comput., 2015, pp. 173-182.

B. Bahmani, A. Goel, and K. Munagala, “Efficient primal-dual
graph algorithms for MapReduce,” in Proc. Int. Workshop Algo-
rithms Models Web-Graph, 2014, pp. 59-78.

H. Su and H. T. Vu, “Distributed dense subgraph detection and
low outdegree orientation,” in Proc. Int. Symp. Distrib. Comput.,
2020, pp- 15:1-15:18.

X. Liu, T. Ge, and Y. Wu, “Finding densest lasting subgraphs in
dynamic graphs: A stochastic approach,” in Proc. IEEE Int. Conf.
Data Eng., 2019, pp. 782-793.

S. Ma, R. Hu, L. Wang, X. Lin, and J. Huai, “Fast computation of
dense temporal subgraphs,” in Proc. IEEE Int. Conf. Data Eng.,
2017, pp. 361-372.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 11, NOVEMBER 2023

Y. Wu, R. Jin, X. Zhu, and X. Zhang, “Finding dense and con-
nected subgraphs in dual networks,” in Proc. IEEE Int. Conf. Data
Eng., 2015, pp. 915-926.

P. Rozenshtein, F. Bonchi, A. Gionis, M. Sozio, and N. Tatti, “Finding
events in temporal networks: Segmentation meets densest-subgraph
discovery,” in Proc. Int. Conf. Des. Mining, 2018, pp. 397—406.

A. Miyauchi and A. Takeda, “Robust densest subgraph discov-
ery,” in Proc. IEEE Int. Conf. Des. Mining, 2018, pp. 1188-1193.

L. Chu, Y. Zhang, Y. Yang, L. Wang, and]. Pei, “Online density
bursting subgraph detection from temporal graphs,” Proc. VLDB
Endowment, vol. 12, no. 13, pp. 2353-2365, 2019.

E. Galimberti, A. Barrat, F. Bonchi, C. Cattuto, and F. Gullo,
“Mining (maximal) span-cores from temporal networks,” in Proc.
Int. Conf. Inf. Knowl. Manage., 2018, pp. 107-116.

R.Li, J. Su, L. Qin, J. X. Yu, and Q. Dai, “Persistent community search
in temporal networks,” in Proc. IEEE Int. Conf. Data Eng., 2018,
pp- 797-808.

K. Zhu, G. H. L. Fletcher, N. Yakovets, O. Papapetrou, and Y. Wu,
“Scalable temporal clique enumeration,” in Proc. Int. Symp. Spatial
Temporal Databases, 2019, pp. 120-129.

A. P. Appel, R. L. de Freitas Cunha, C. C. Aggarwal, and M. M.
Terakado, “Temporally evolving community detection and pre-
diction in content-centric networks,” in Proc. Joint Eur. Conf. Mach.
Learn. Knowl. Discov. Databases, 2018, pp. 3-18.

R. Aktunc, I. H. Toroslu, and P. Karagoz, “Event detection by
change tracking on community structure of temporal networks,”
in Proc. IEEE Int. Conf. Adv. Social Netw. Anal. Mining, 2018,
pp- 928-931.

N. Shah, D. Koutra, T. Zou, B. Gallagher, and C. Faloutsos,
“TimeCrunch: Interpretable dynamic graph summarization,” in
Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2015,
pp- 1055-1064.

H. Wu et al., “Core decomposition in large temporal graphs,” in
Proc. IEEE Int. Conf. Big Data, 2015, pp. 649-658.

M. Yu, D. Wen, L. Qin, Y. Zhang, W. Zhang, and X. Lin, “On que-
rying historical k-cores,” Proc. VLDB Endow., vol. 14, no. 11,
pp- 2033-2045, 2021.

Y. Yang, D. Yan, H. Wu, J. Cheng, S. Zhou, and J. C. S. Lui,
“Diversified temporal subgraph pattern mining,” in Proc. ACM
SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2016, pp. 1965-1974.

Y. Yang, J. X. Yu, H. Gao,]. Pei, and J. Li, “Mining most frequently
changing component in evolving graphs,” World Wide Web,
vol. 17, no. 3, pp. 351-376, 2014.

S. Huang, A. W. Fu, and R. Liu, “Minimum spanning trees in tem-
poral graphs,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2015, pp. 419-430.

S. Gurukar, S. Ranu, and B. Ravindran, “COMMIT: A scalable
approach to mining communication motifs from dynamic networks,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2015, pp. 475-489.

Hongchao Qin received the BS degree in mathe-
matics, the ME and PhD degrees in computer sci-
ence from Northeastern University, China in
2013, 2015 and 2020, respectively. He is cur-
rently a postdoc in Beijing Institute of Technology,
China. His current research interests include
social network analysis and data-driven graph
mining.

Rong-Hua Li received the PhD degree from the
Chinese University of Hong Kong in 2013. He is
currently a professor with the Beijing Institute of
Technology, Beijing, China. His research interests
include graph data management and mining,
social network analysis, graph computation sys-
tems, and graph-based machine learning.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:51:18 UTC from IEEE Xplore. Restrictions apply.

QIN ETAL.: DENSEST PERIODIC SUBGRAPH MINING ON LARGE TEMPORAL GRAPHS

Ye Yuan received the BS, MS, and PhD degrees
in computer science from Northeastern Univer-
sity, in 2004, 2007, and 2011, respectively. He is
now a professor with the School of Computer Sci-
ence & Technology, Beijing Institute of Technol-
ogy, China. His research interests include graph
databases, probabilistic databases, and social
network analysis.

Yongheng Dai received the PhD degree from
The Chinese University of Hong Kong in 2011.
Now he works as a R&D engineer in the areas of
data modeling, knowledge formalization, and
knowledge-driven machine learning with the
China Academy of Electronics and Information
Technology (CAEIT). From 2011 to 2013, he
worked on optical fiber communication and digital
signal processing in Huawei. After that, he
worked on OFDM-based visible light communica-
tion and OCC-based indoor positioning until 2017
in CAEIT. He has published 33 papers in international journals and con-
ferences, and holds 10 pending patents.

11273

Guoren Wang received the BSc, MSc, and PhD
degrees from the Department of Computer Sci-
ence, Northeastern University, China, in 1988,
1991 and 1996, respectively. Currently, he is a pro-
fessor with the Department of Computer Science,
Beijing Institute of Technology, Beijing, China. His
research interests include XML data management,
query processing and optimization, bioinformatics,
high dimensional indexing, parallel database sys-
tems, and cloud data management.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:51:18 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

