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Abstract—Densest subgraphs are often interpreted as communities, based on a basic assumption that the connections inside a

community are much denser than those between communities. In a graph with temporal information, a densest periodic subgraph is

the most densely connected periodic behavior which needs to be captured. Unfortunately, the existing work do not model the densest

periodic subgraph in temporal graphs, and the current algorithms for mining the densest subgraph cannot be applied to detect the

densest periodic subgraph in the temporal networks. To tackle this problem, we propose a novel model, called the densest s-periodic

subgraph, which presents the densest periodic subgraph whose period size is s. We prove that finding the densest s-periodic subgraph

can be solved in polynomial time, but it is still challenging because the naive algorithm needs to repeatedly invoke a maximum flow

algorithm for many periodic subgraphs. To compute the densest s-periodic subgraph efficiently, we first develop an effective pruning

technique based on the degeneracy of the graph to significantly prune the number of the periodic subgraphs. Then, we present a more

efficient algorithm that can reduce the computations for the degeneracy and maximum flow. Next, we develop a greedy algorithm that

can compute the approximate densest s-periodic subgraph and achieve an approximation ratio of 1/2. Finally, the results of extensive

experiments on several real-life datasets demonstrate the efficiency, scalability, and effectiveness of our algorithms.

Index Terms—Densest subgraph, periodic subgraph, temporal graph

Ç

1 INTRODUCTION

TEMPORAL networks, in which each edge is associated with
an interaction time t, are ubiquitous in real life. For

example, in a temporal social network, each edge ðu; v; tÞ
denotes a contact between user u and user v at time t. In a
temporal communication network, each edge shows infor-
mation of a sender, a receiver and their communication
time. In fact, most networks are temporal due to at least one
creation time of each edge associated. In the temporal
graphs, some graph mining problems become more difficult
to solve since we need to define new concepts and design
more non-trivial methods by considering the temporal
information. There are lots of works considering temporal
information, to name but a few, Holme [1], [2] makes a col-
loquium about the novel definitions of paths, centrality
measures, cyclic patterns motifs and so on in temporal net-
work. He states that the methods and models developed for
static networks could be inapplicable or could need non-
trivial generalizations; Han et al. [3] build a temporal graph
analysis system by exploring the interesting interplay

among locality, parallelism, and incremental computation
in supporting common mining tasks on temporal graph.

Periodicity is a frequently happening phenomenon for
communications in temporal networks. Animal migration
in the animal connection network [4], cell activation in the
brain neuron network [5], and biological clock in the human
activity network all exhibit periodic behaviors. In a static
network, a densest subgraph can be related to community
structure because a densest subgraph is a typical interactive
behavior in a network. However, in a temporal network, a
densest subgraph cannot represent a periodic interactive
behavior since the dense subgraph model do not consider
the temporal information on the edges. Therefore, we cannot
use the densest subgraph model to find the periodic behav-
ior such as animal migration, cell activation etc. In this man-
uscript, we seek for the periodic densest subgraph which is
a dense part and also connected periodically. This model is
helpful for finding the most densely connected and signifi-
cant periodic activities in the temporal graphs, which can be
described in the following applications.

Mining the Periodic Medical Behavior. It usually takes sev-
eral treatments to cure a disease, so the treatments for a
patient must be periodical. The hospital dataset [6] is a tem-
poral network of face-to-face contacts between patients and
health-care workers (including nurses, doctors, and admin-
istrative staffs). Inside this temporal network, there are
interactions of patient-doctor, nurse-doctor, patient-nurse
and so on. Each periodic subgraph in the temporal network
can be a possible treatment interactions. The densest peri-
odic subgraphs in this temporal network refer to the most
complex treatment process in this hospital, since the density
of this subgraph is highest. Therefore, we can seek the dens-
est periodic subgraphs to mine the periodic medical behav-
ior in a hospital interaction temporal network.
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Predicting the Future Co-Operation.A densest periodic sub-
graph is more likely to model a periodic activity in the tem-
poral network. Once we identify a periodic activity, we may
predict that the same activity will appear within a regular
periodic interval. Based on this observation, we are capable
of inferring the future interactions of a group of individuals
in a co-operation temporal network such as DBLP. For exam-
ple, if four authors co-author papers continuously at years
2020, 2021, 2022. Then, we can infer that these four research-
ers are likely to coauthor papers in year 2023.

In this manuscript, we define a particular periodic and
dense pattern on temporal networks, called densest periodic
subgraph, which is the densest subgraph pattern that occurs
periodically. In the literature, a few solutions for mining
periodic subgraphs in temporal graphs have been proposed
in the past years. For example, Lahiri [7] proposes an algo-
rithm based on enumeration trees to list all the maximal
periodic subgraphs in temporal networks. However, it can
only list the maximal periodic subgraphs, but can not find
the periodic and dense subgraphs. Qin [8] puts forward an
efficient algorithm with several pruning strategies to seek
all maximal periodic cliques in temporal networks.
Although clique is a model of the dense subgraph, it is still
hard to apply the periodic clique model into practical appli-
cations since the number of the maximal periodic cliques is
exponential and the algorithm is not scalable (the problem
of mining periodic clique is NP-hard [8]). Zhang [9] models
the activity of communities as a mixture of hidden periodic
signals and proposes an optimization approach to solve it.
However, this model is difficult to optimize, so it can only
handle the graph with thousands of nodes. Thus, a better
algorithm is demanded for searching periodic and dense
subgraphs on large temporal networks.

Based on a basic assumption that the connections inside a
community are much denser than those between communi-
ties, we study the problem of mining densest periodic
subgraphs (DPS) in the temporal graph, and invent an algo-
rithm which can solve the DPS problem in polynomial time.
To the best of our knowledge, we are the first to study the
densest periodic subgraphs and propose a scalable algo-
rithm to search them.

Contributions. In this paper, we formulate and provide
efficient solutions to find the densest periodic subgraphs in
a temporal graph. In particular, we make the following
main contributions.

Novel Model. We propose a novel concept, called densest
s-periodic subgraph, to characterize the densest periodic
subgraph in temporal graphs. A s-periodic subgraph is the
subgraph that occurs periodically in the temporal graph
with the number of occurrences is s. And a densest s-peri-
odic subgraph is the densest subgraph among all the s-peri-
odic subgraphs. As for the density of periodic subgraphs,
we define it properly so that the problem can be solved in
polynomial time. Moreover, the densest s-periodic sub-
graph is a s-periodic subgraph which has the highest den-
sity, hence it is more likely to be related to the periodic
behavior in the temporal networks.

Scalable Algorithms. To search the densest s-periodic sub-
graph, the basic algorithm is to enumerate the maximal peri-
odic subgraphs first, and then invoke the maximum flow
algorithm in each maximal periodic subgraph. However,

this naive algorithm may produce numerous redundant
computations while enumerating. In order to improve the
efficiency, we first introduce s-periodic degeneracy to prune
the periodic timestamps while generating the periodic sub-
graphs. Then, we use k-core concepts to reduce the number
of candidate nodes. Next, we propose a generated graph G�

in which we can search the densest s-periodic subgraph by
calling the maximum flow algorithm only once. Finally, we
put forward a more scalable approximation algorithm that
can process a ten-million level temporal graph in seconds.

Extensive Experiments. We conduct extensive experiments
using several real-life temporal graphs to evaluate the pro-
posed algorithm under different parameter settings. The
results indicate that our algorithms significantly outperform
the baselines in terms of community quality. In addition,
through extensive experiments, we find that our methods
are highly efficient. For instance, on a large-scale temporal
graph with more than 3.2 million nodes and 12.2 million
edges, our best exact algorithm and approximate algorithm
can find the densest periodic subgraphs in 312 and 32 sec-
onds, respectively.

Organization. Section 2 introduces the preliminaries and
formulations of our problem. The basic algorithm of mining
densest periodic subgraphs is proposed in Section 3. Fur-
thermore, the algorithms with several pruning strategies
and the approximate algorithm are proposed in Sections 4
and 5. Experimental studies are presented in Section 6, and
the related work is discussed in Section 7. Section 8 draws
the conclusion of this paper.

2 PRELIMINARIES

Let G ¼ ðV; EÞ be an undirected temporal graph, where V
and E denote the set of nodes and the set of temporal edges
respectively. Each temporal edge e 2 E is a triplet ðu; v; tÞ,
where u; v are nodes in V, and t is the interaction time
between u and v. We assume that t is an integer, since the
timestamp is an integer in practice.

We can extractG into a series of snapshots based on the time-
stamps. Let T ¼ ½ftjðu; v; tÞ 2 Eg� be the set of timestamps, and
it is a sequence ½t1 : tjT j�. Therefore, G ¼ fG1;G2:::GjT jg such
that each snapshot Gi ¼ ðVi;EiÞ where Vi ¼ fujðu; v; tiÞ 2 Eg
andEi ¼ fðu; vÞjðu; v; tiÞ 2 Eg.

The de-temporal graph of G, denoted byG ¼ ðV;EÞ, is a static
graph that ignores all the timestamps associated with the tem-
poral edges. More formally, for the de-temporal graph G of G,
V ¼ V and E ¼ fðu; vÞjðu; v; tÞ 2 Eg. Let NuðGÞ ¼ fvjðu; vÞ 2
Eg be the set of neighbor nodes of u, and duðGÞ ¼ jNuðGÞj be
the degree of u in G. A graph G0 ¼ ðV 0;E0Þ is a subgraph of
G ¼ ðV;EÞ if V 0 � V andE0 � E. A subgraphGS ¼ ðVS;ESÞ is
referred to as an induced subgraph of G if ES ¼ fðu; vÞju; v 2
VS; ðu; vÞ 2 Eg. Similarly, a temporal subgraph GS ¼ ðVS; ESÞ
is referred to as an induced temporal subgraph of G if VS � V
and ES ¼ fðu; v; tÞju; v 2 VS; ðu; v; tÞ 2 Eg. For convenience, we
use the notion S � G (S � G if S 6¼ G) to indicate that S is a
subgraph ofG.

Definition 1 (s-periodic time support set). Given a tempo-
ral graph G, de-temporal graph G of G and parameter s, a
s-periodic time support set of a subgraph S � G can be denoted
by PTsðSÞ ¼ ftj1 ; � � � ; tjsg (j1 <¼ j2 <¼ :::js), satisfying
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tjiþ1 � tji is a constant which is the periodic interval and S �
Gtji

for all i ¼ 1; � � � ; s � 1.

By Definition 1, we can see that the timestamps in a
s-periodic time support set form an arithmetic sequence
and the cardinality of a s-periodic time support set is
exactly equal to s. We do not care about the periodic inter-
val, but focus on the period size s, since different periodic
behavior may occur with different periodic interval. Clearly,
there may exist many periodic support sets of size s for a
subgraph S. Derived from Definition 1, we define the
s-periodic subgraph below.

Definition 2 (s-periodic subgraph). Given a temporal graph
G, de-temporal graph G of G and parameter s, a subgraph S �
G is a s-periodic subgraph in G if there exists a s-periodic time
support set PTsðSÞ.

By Definition 2, any s-periodic subgraph S 2 G has at
least one s-periodic time support set, and a subgraph S is a
maximal s-periodic subgraph if there is no other s-periodic
subgraph S0 that satisfies S � S0. Below, we define the den-
sity of the subgraph.

Definition 3 (density). The density of a graph G ¼ ðV;EÞ,
denoted by rðGÞ, equals to the ratio between number of the
edges and number of nodes in G, i.e., rðGÞ ¼ jEjjV j .

Based on Definition 2 and Definition 3, the model of the
densest periodic subgraph can be defined as follows.

Definition 4 (densest s-periodic subgraph). A densest
s-periodic subgraph S (abbreviated as s�DPS) is a s-periodic
subgraph which has the largest density such that there exists no
s-periodic subgraph S0 satisfying rðS0Þ > rðSÞ.

Example 1. Fig. 1 a illustrates all the five snapshots of a tem-
poral graph G. Fig. 1b illustrates the de-temporal graph G
of G in Fig. 1a. For the subgraph G0 ¼ G1 \G2 \G3 in
Fig. 1c, we can see that the time support set of G0 in G is
[1,2,3], such thatG0 is a 3-periodic subgraph. However, the
density rðG0Þ ¼ 13=7 and we cannot find a subgraph S �
G0 satisfying rðSÞ > rðG0Þ. So, G0 is the densest subgraph
of the 3-periodic subgraph in time [1,2,3].

Problem. Given a temporal graph G, an integer s 	 2, the
goal of mining the densest periodic subgraph is to compute
the densest s-periodic subgraph in G.

Challenges. One straightforward method to solve the
problem is enumerating the maximal periodic subgraphs

first, and then invoking the traditional parametric flow algo-
rithm to find the densest subgraph in each maximal periodic
subgraph. Finally, picking the densest solution among all
maximal periodic subgraphs to be the s�DPS. Since the
number of the maximal periodic subgraph is bounded by
jT j2, the problem can be solved in polynomial time. How-
ever, this method is not efficient and redundant, since we
need to invoke the maximum flow algorithm on the periodic
subgraphs for OðjT j2Þ times, and many of the periodic sub-
graphs are similar or totally same. Another potential
approach is finding a subgraph with highest density first,
and then checking whether the subgraph is periodic.
Clearly, this approach is impracticable, because choosing
such graph with highest density is tough and we need non-
polynomial time to try all the subgraphs.

Therefore, the challenge of our problem is how to effi-
ciently enumerate all periodic subgraphs with less redun-
dant computations. In the following sections, we will
develop several novel graph reduction techniques and an
efficient enumeration algorithm to identify the densest
s-periodic subgraph.

3 THE BASIC ALGORITHM

To find the s�DPS in a temporal graph, a straightforward
way is enumerating all the s-periodic subgraph first, and
then invoking Goldberg’s parametric flow algorithm [10],
[11] to search the densest subgraphs in each s-periodic sub-
graph. Combining all the results of densest subgraphs in all
s-periodic subgraphs, a subgraph with the maximum den-
sity is the s�DPS. Clearly, this basic algorithm is costly
because the number of s-periodic subgraphs is numerous
and the procedure of densest subgraph mining algorithm is
ineffective in large graphs. Therefore, we conduct several
powerful pruning rules which can reduce the size of the
temporal graph before performing the subgraph enumera-
tion and densest subgraph mining.

Below, we introduce a simple periodic subgraph enu-
meration method using Goldberg’s algorithm [11] to find
s�DPS in Algorithm 1. The implementation detail is shown
as follows.

Algorithm 1 first devises a new data structure, PerioSub,
to represent the set of s-periodic time support set in Defini-
tion 1. Each item PS in PerioSub is a four-tuple ½s; i; l; G0�, in
which s is the start time, i refers to the time interval, l repre-
sents the current confirmed length and G0 is the current
periodic subgraph. Based on this data structure, the algo-
rithm makes use of PerioSub to maintain all the candidates
of the arithmetic sequences, StrtT to maintain the starting
timestamps set and DPS to record the densest s-periodic
subgraph. Initially, PerioSub, StrtT and DPS are set to be
empty (line 1). Then, the algorithm enumerates all the time-
stamps from 1 to jT j (line 2). For each timestamp t, the algo-
rithm explores all the candidate arithmetic sequences in
PerioSub (line 3). For each candidate PS 2 PerioSub, if ðt�
PS:sÞ%PS:i 6¼ 0, we can continue the loop, because t is abso-
lutely not in the arithmetic sequence PS (line 4). Otherwise,
the algorithm can augment the arithmetic sequence PS by
adding t into it. In this case, we increase PS:l by 1, and com-
pute the intersection of the periodic snapshots (line 5). Next,
if PS:l ¼ s, there exists a valid periodic subgraph which is

Fig. 1. Running example.
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recorded by PS:G0. Then the algorithm invokes procedure
DensestSub to compute the densest subgraph in PS:G0 (line
7). If the density of the densest subgraph in PS:G0 is larger
than the recorded value, the DPS will be updated (line 8).
After that, the current PS is popped from PerioSub since it
has been considered (line 9). The algorithm also applies the
current timestamp t to generate a new starting timestamp
which will be used for the next iterations (lines 10-11). Since
Algorithm 1 explores all the possible arithmetic sequences,
it will search all the possible periodic subgraphs. And in
each periodic subgraph, it will call procedure DensestSub

once.

Algorithm 1. DPS�BðG; sÞ
Input: Temporal graph G ¼ fG1; :::GjT jg, parameter s
Output: s�DPS in G

1: PerioSub ;; StrtT  ;;DPS  ;;
2: for t 1 : jT j do
3: for PS  ½s; i; l; G0� 2 PerioSub do
4: if ðt� PS:sÞ%PS:i 6¼ 0 then continue;
5: PS:l PS:lþ 1; PS:G0  PS:G0 \Gt;
6: if PS:l ¼ s then
7: DPS0  DensestSubðPS:G0; 0; jEPS:G0 jÞ;
8: if rðDPS0Þ > rðDPSÞ thenDPS  DPS0;
9: PerioSub:popðPS); continue;
10: for s 2 StrtT do PerioSub:pushð½s; t�s; 2; Gs \Gt�Þ;
11: StrtT  StrtT [ ftg;
12: return DPS;
13: Procedure DensestSubðG; l; uÞ
14: DS  ;;
15: while u� l 	 1=jVGj2 do
16: r ¼ ðlþ uÞ=2; GF  VG [ fsg [ ftg in which s; t are new

nodes;
17: for each edge ðu; vÞ 2 EG do
18: add edges ðu; vÞwith capacity 1 into GF ;
19: for each node w 2 VG do
20: add an edge ðs; wÞwith capacity jEGj into GF ;
21: add an edge ðw; tÞ with capacity ðjEGj þ 2
 r� dwðGÞÞ

into GF ;
22: Compute the minimum s-t cut in GF , denoted by S

and T ;
23: if S n fsg 6¼ ; then {DS  S n fsg; l r;} else u d;
24: returnDS;

Procedure DensestSub uses the Goldberg’s parametric
flow algorithm, and it can find the maximal densest sub-
graph in polynomial time. The general idea of procedure
DensestSub is as follows: it first uses a binary search process
to find the optimal density (lines 15-16). In each step of the
procedure, the algorithm guesses a density r in a binary
search manner, and tries to find a subgraph G with density
larger than r (lines 15-23). Such a subgraph can be identified
by computing the minimum s-t cut in a flow network GF

(lines 16-21). The binary search procedure can terminate in
OðlognÞ iterations (lines 15-16) [11]. The detailed descrip-
tion and correctness analysis of Goldberg’s algorithm can
be found in [10].

Example 2. Fig. 2 shows the process of generating the 3-
periodic subgraphs and computing the densest sub-
graph while t ¼ 2! 4. When t ¼ 2, the start time set
StrtT is [1,2], and the set PerioSub only has one item.

When t comes to 3, the algorithm finds one 3-periodic
subgraph in time [1,2,3] and it invokes Proc. DensestSub
to find the densest subgraph. Subsequently, the algo-
rithm enumerates all the 3-periodic subgraphs such
as subgraph in time ½1; 2; 3�; ½2; 3; 4�; ½1; 3; 5�; ½3; 4; 5� and
so on.

Theorem 1 (Complexity of Algorithm 1). For a temporal
graph G with jT j timestamps and de-temporal graph G ¼
ðV;EÞ of G, the time and space complexity of Algorithm 1 are
OðjT j2s�1mnlog ðn2mÞÞ and Oðmþ njT j2s�1Þ respectively, in
which n ¼ jV j;m ¼ jEj.

Proof. Recall that each timestamps of a periodic is a s-term
arithmetic sequence which can be represented as
ftiþp; tiþ2p; � � � ; tiþspg, where 0 < i � jT j � ðs � 1Þp and
p 	 1 is a common difference. Clearly, the maximum p is
jT j�1
s�1

j k
. Since iþ sp � jT j, we have i � jT j � sp. As a

result, the total number of arithmetic sequences can be

bounded by
P jT j�1

s�1

� �
p¼1 ðjT j � spÞ. By relaxing this formula,

we can easily derive that the number of is bounded by

OðjT j2s�1Þ.
Since there are OðjT j2s�1Þ periodic subgraphs, in each

enumeration, we need total OðsmÞ time to compute the
interactions of the snapshots for s times (line 5). Accord-
ing to [12], [13], the maximum flow of GF for all possible
r can be computed in Oðnmlog ðn2mÞÞ time, such that we
need Oðnmlog ðn2mÞÞ to perform Proc. DensestSub. There-
fore, the total time complexity is OðjT j2s�1ðsmþ nmlog
ðn2=mÞÞÞ ¼ OðjT j2s�1nmlog ðn2mÞÞ.

Besides, the algorithm need to store the graph and the
storage for each periodic graph G0 can be released after
computing the densest subgraph G0. However, the maxi-
mum size of set PerioSub is OðjT j2s�1Þ, and we can only
store the nodes in G0 to present the graph. So, the space
complexity is Oðmþ njT j2s�1Þ. tu

4 THE IMPROVED ALGORITHMS

As described in Algorithm 1, we need to enumerate all the
snapshots (line 2) in the temporal graph to generate the
periodic subgraph and invoke the maximum flow computa-
tion for many times (line 18). In this section, in order to
improve the efficiency, we propose several powerful techni-
ques to prune the unpromising nodes and even periodic
subgraph which are totally not connected with the s�DPS.
Our key idea for reduction is based on the concept of degen-
eracy. Before proceeding further, we first give the definition
of degeneracy as follows.

Fig. 2. Illustration for Algorithm 1.
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Definition 5 (Degeneracy). The degeneracy of a graph G is
the minimum integer d such that each subgraph S � G con-
tains a node v with degree no larger than d.

The degeneracy of G has many properties, two of which
are listed as following lemmas:

Lemma 1. For two graph G and G0, the degeneracy d of graph
G0 \G is no larger than the degeneracy of G0 or G.

Lemma 2 (Ref. [14]). The degeneracy d of a static graph G, is 1/
2-approximation for the density rmax of the densest subgraph
in G, i.e. d=2 � rmax < d.

The classic degeneracy, however, cannot be directly used
to bound the density of s�DPS in temporal graphs, since
we need to consider all the s-periodic subgraphs. Below, we
introduce a novel concept, called s-periodic degeneracy,
which will be applied to bound the density of s�DPS.

Definition 6 (s-periodic degeneracy). Given a temporal
graph G and parameter s, the s-periodic degeneracy of G is the
smallest integer d̂ such that every s-periodic subgraph contains
a node with degree at most d̂.

Theorem 2. The s-periodic degeneracy d̂ of a temporal graph G,
is 1/2-approximation for the density of s�DPS r̂max in G, i.e.
d̂=2 � r̂max < d̂.

Proof. Suppose that Ĝ is the s-periodic subgraph which has
the largest d̂. According to Definition 6, d̂ is the smallest
integer so there exists a subgraph Ŝ � Ĝ satisfying
dvðŜÞ ¼ d̂ for each v 2 Ŝ. Since rðŜÞ ¼ d̂

2 , we can have
d̂=2 � r̂max. Furthermore, for any s-periodic subgraph S
in G and each node v 2 S, dvðSÞ � d̂. So, any subgraph S
satisfies that rðSÞ < d̂. Therefore, d̂=2 � r̂max < d̂. tu

Recall that in Algorithm 1, we set a lower bound and an
upper bound for the density of the s�DPS in temporal
graph G (line 7), and then try to compute the maximum
flow with using parameter of ðlþ uÞ=2 (line 15). However,
according to Theorem 2, the lower bound and upper bound
of the maximum density of s�DPS can be d̂=2 and d̂ respec-
tively, in which d̂ is the s-periodic degeneracy. In this sec-
tion, we introduce an effective method to compute d̂. At
first, we introduce a new concept, k�core, which can be
applied into computing d̂.

Definition 7 (k�core). Given a de-temporal graph G of G and a
parameter k, a k�core is the maximal subgraph S of G in which
the degree of each node is at least k, i.e., duðSÞ 	 k for u 2 G.

Given a graph G, the degeneracy d is the number of the
maximum k satisfying kCore 6¼ ;. The detail of procedure
Degeneracy d is shown at Algorithm 2. It first initializes the
considering subsets S with VG, the deleting nodes queue Q
with ;, and Deg½u� with the degree of u inside GS (line 1).
Then, the algorithm loops until the S is deleted to be
; (line 9). In each loop, it captures the nodes set D with the
minimal degree, and then pushes all nodes in D into
Q (lines 3-4). Subsequently, the algorithm iteratively pro-
cesses the nodes in Q. In each iteration, the algorithm pops
a node v from Q and uses D to maintain all the deleted
nodes (line 6). For each wwhich is the neighbor of v in GS , if
Deg½w� 	 d, the algorithm reduces Deg½w�. If the revised

Deg½w� is less than d, w will be peeled from the considering
nodes set S and then be pushed into Q (line 8). Next, S is
updated by the deleting nodes in D. If S is ;, then the algo-
rithm returns d, which is the maximal number of kCore, i.e.,
the degeneracy of G.

Algorithm 2. DegeneracyðGÞ
Input: Temporal graph G ¼ fG1; :::GjT jg, parameter s
Output: s�DPS in G

1: S  VG; Q ;; for u 2 S doDeg½u�  duðSÞ;
2: while True do
3: d the minimal degree of nodes in the graph GS ;
4: D fujduðGSÞ ¼ dg; for u 2 D do Q:pushðuÞ;
5: while Q 6¼ ; do
6: v Q:popðÞ;D D [ fvg;
7: for w 2 NvðGSÞ s.t.Deg½w� 	 d do
8: Deg½w�  Deg½w� � 1; IfDeg½w� < d then Q:pushðwÞ;
9: S  S nD; If S ¼ ; then return d;

Theorem 3 (Complexity of Computing Degeneracy). For
a graph G ¼ ðV;EÞ, the time and space complexity of comput-
ing G0s degeneracy by Algorithm 2 are both OðmÞ, in which
m ¼ jEj.

Proof. In line 1, Algorithm 2 needs OðmÞ to record the
degree of all the nodes. The minimal degree of nodes
can be found in Oðlog jV jÞ (line 3). For lines 4-8, we can
observe that each edge will be considered once, so the
total time complexity of this process is OðmÞ. Besides,
the algorithm needs to maintain the graph and sets S;Q
and Deg, which all require OðmÞ memory. In conclude,
the time and space complexity of Algorithm 2 are all
OðmÞ. tu

To compute the exact s-periodic degeneracy, we enumer-
ate the periodic subgraphs and invoke Algorithm 2 to com-
pute the degeneracy d of each periodic subgraph, and the
maximum d is the s-periodic degeneracy d̂. As it needs
OðjT j2mÞ (see the proof of Theorem 1) to generate all the
s-periodic subgraphs, the whole process of computing d̂

needs time complexity of OðjT j2m2Þ.

4.1 Algorithm of Pruning Invalid Subgraphs

In the previous subsection, we mentioned that in order to
compute s-periodic degeneracy, we need to enumerate all
the s-periodic subgraphs first, which is obviously ineffi-
cient. To avoid listing all the periodic subgraphs, we pro-
pose a pruning algorithm which considers the periodic
property on-demand. The details are provided in Algo-
rithm 3, which is abbreviated as DPS�P .

Algorithm 3 uses the similar enumeration method like
Algorithm 1 to compute the periodic subgraphs. However,
it adds timestamps set DelT to record the time t where
snapshot Gt will not contain the s�DPS (line 1). We use
PerioSub to record the temp results, StrtT to record the can-
didate start time, DPS to record the candidate s�DPS and d̂

to record the computed s-periodic degeneracy (line 1), then
enumerate t from 1 to jT j to generate all the periodic sub-
graphs (line 2). In this algorithm, if the current t is in DelT ,
it will not be considered to construct a periodic subgraph.
Subsequently, it checks the value of start, interval and
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length in PS to identify a periodic subgraph. Note that, it
needs to check whether the current t�PS:s

PS:i equals PS:l,
because some timestamps may be added into DelT before,
and they will be skipped (line 6). If we have found a peri-
odic subgraph, the algorithm uses Algorithm 2 to compute
the max periodic degeneracy d of the current periodic sub-
graph PS:G (line 9). If d is larger than the computed s-peri-
odic degeneracy d̂, then d̂ will be updated to be equaled to
d (line 11). Concurrently, the algorithm checks whether the
degeneracy of the snapshots Gt0 is less than d̂=2 with t0

ranges from t to jT j. If DegeneracyðGt0 Þ < d̂
2 , according to

Theorem 1, any periodic subgraph contains timestamps t0

will not have a subgraph whose density is larger than d̂
2 , so

t0 will be added into DelT (lines 12-13). Note that, we can
compute once and store the degeneracy of each snapshots
Gt, so it will not repeatedly invoke Algorithm 2. Next, in
line 14, if d 	 rðDPSÞ

2 , the current periodic subgraph may
have a subgraph with density larger than d̂. Then, the algo-
rithm invokes procedure DensestSub to compute the densest
subgraph in the current periodic subgraph. According to
Theorem 2, it invokes DensestSub with the initialized lower
and upper bound of d

2 and d. If the computed densest sub-
graph DPS0 is denser than DPS, the algorithm update DPS
to be DPS0 (line 16). In the end, it removes the considered
periodic subgraph PS (line 17), and applies the current
timestamp t to generate a new starting timestamp (line 18).
Finally, after t ranges from 1 to jT j, it returns DPS.

Algorithm 3. DPS�P ðG; sÞ
Input: Temporal graph G ¼ fG1; :::GjT jg, parameter s
Output: s�DPS in G

1: PerioSub ;; StrtT;DelT  ;; ;;DPS  ;; d̂ 0;
2: for t 1 : jT j do
3: If t 2 DelT then continue;
4: for PS  ½s; i; l; G0� 2 PerioSub do
5: if ðt� PS:sÞ%PS:i 6¼ 0 then continue;
6: if t�PS:s

PS:i 6¼ PS:l then {PerioSub:popðPS); continue;}
7: PS:l PS:lþ 1; PS:G0  PS:G0 \Gt;
8: if PS:l ¼ s then
9: d DegeneracyðPS:GÞ;
10: if d > d̂ then
11: d̂ d;
12: for t0  t : jT j do
13: if DegeneracyðGt0 Þ < d̂

2 thenDelT:addðt0Þ;
14: if d 	 rðDPSÞ=2 then
15: DPS0  DensestSubðPS:G0; d2 ; dÞ;
16: if rðDPS0Þ > rðDPSÞ thenDPS  DPS0;
17: PerioSub:popðPSÞ; continue;
18: for each s 2 StrtT doPerioSub:pushð½s; t�s; 2; Gs \Gt�Þ;
19: return DPS;

Theorem 4 (Complexity of Algorithm 3). The worst case
time and space complexity of Algorithm 3 are the same as those
of Algorithm 1.

In the worst case, Algorithm 3 needs to invoke Proce-
dure DensestSub to compute the densest subgraph of
each periodic subgraph. However, the pruning rule
based on Algorithm 3 can reduce the computation time
greatly. The running time of Algorithm 3 is shown in
Section 6.

4.2 Algorithm of Putting All Together

Although Algorithm 3 is efficient in practice, it still has
three limitations. ðiÞ It needs to perform the maximum
flow computation for many times (line 15). In the worse
case, the number of the calls of procedure DensestSub is
OðT 2

s
Þ. ðiiÞ It needs to invoke Algorithm 2 to compute the

degeneracy for the s-periodic subgraphs (line 9) and the
snapshots (line 13). In the worse case, the number of the
calls of Algorithm 2 is also OðT 2

s
Þ. ðiiiÞ It needs to com-

pute the intersection of the snapshots Gt for s times (line
7) to generate one s-periodic subgraph. Only this step
will take OðT 2mÞ time.

Algorithm 4. DPS�PþðG; sÞ
Input: Temporal graph G ¼ fG1; :::GjT jg, parameter s
Output: s�DPS in G

1: �d guess a value for the s-periodic degeneracy of G;
2: Gc ¼ fVc; Ecg  kCoreðG;

�d
2Þ;

3: PerioN  ;; StrtT;DelT  ;; ;;DPS  ;; G�  ;;
4: for t 1 : jT j do
5: If T 2 DelT then continue;
6: for each u 2 Vc s.t. duðGtÞ 	 �d

2 do
7: for PN  ½s; i; l� 2 PerioN ½u� do
8: if ðt� PN:sÞ%PN:i 6¼ 0 then continue;
9: if t�PN:s

PN:i 6¼ PN:l then {PerioN ½u�:popðPN); continue;}
10: PN:l PN:lþ 1;
11: if PN:l ¼ s then
12: add one node f½u; PN:s; PN:i�g into G�;
13: for s 2 StrtT do
14: PerioN ½u�:pushð½s; t�s; 2;minðduðGsÞ; duðGtÞÞ�Þ;
15: for each node ½u; s; i� 2 VG� do
16: for v 2 NuðGÞ s.t. ½v; s; i� 2 VG� do
17: if edge ðu; vÞ in fGs;Gsþi; :::Gsþiðs�1Þg then
18: add edge ð½u; s; i�; ½v; s; i�Þ into G�;
19: �d DegeneracyðG�Þ; G�  kCoreðG�; �d2Þ;
20: return DensestSubðG�; �d2 ;�dÞ;
21: Procedure kCoreðG; dÞ
22: return k�core of G in which k ¼ d;

To overcome those limitations, we propose an improved
algorithm called DPS�Pþ, and the striking features are as
follows. First, it does not need to enumerate the s-periodic
subgraphs, but generate one new graph with the promising
periodic nodes to record the periodic information. Second,
DPS�Pþ only needs to compute the s-periodic degeneracy
and to invoke the Proc. DensestSub to compute the densest
subgraph for only once, which greatly save the computation
time. Third, to generate the new graph, it does not need to
compute any interactions of the snapshot, which makes the
process efficient. Before introducing DPS�Pþ, we show a
property of the s�DPS which can be applied to reduce the
temporal networks at the beginning of the algorithm.

In the last section, we prune some snapshots to speed up
the enumerations for the periodic subgraphs. However,
according to the theorem below, we can actually prune
some nodes that are definitely not contained in the s�DPS
at the beginning.

Theorem 5. Given a temporal graph G, its de-temporal graph G,
parameter s and the s-periodic degeneracy d̂, all nodes in
s�DPS need to be contained in d̂

2-Core of G.
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Proof. According to the definition of the de-temporal graph
G, any s-periodic subgraph G0 in G must be contained in
G. So for any node u and any G0, duðG0Þ � duðGÞ. We can
know from Theorem 2 that the density of the s�DPS in
one s-periodic subgraph G0 is at least d̂=2, so the density
of the induced graph from the s�DPS in G is no less than
d̂=2. Since d̂

2-Core is a maximal subgraph in which the
degree of each node is at least d̂=2, if the s�DPS is not
contained in d̂

2-Core then one node u0 in the s�DPS will
have density less than d̂=2. However, we can remove u0

from the s�DPS to get a subgraph with higher density,
which violates the definition of the s�DPS. Therefore, all
the s�DPS � d̂

2-Core. tu

According to Theorem 5, we can invoke the kCore algo-
rithm to reduce the graph size first, and then find s�DPS in
the reduced graph. Furthermore, the kCore structure in the
graph holds the property that each kþ1-Core must be con-
tained in the kCore. So, we can store the intermediate sub-
graph, and delete the nodes or unnecessary periodic
subgraphs by a peeling algorithm. We generate a new graph
which records the periodic information from the reduced
graph. The generated graph can be defined as follows.

Definition 8 (G-star). Given a temporal graph G, parameter s
and s-periodic degeneracy d̂ of G, G-star (G�) is a static graph
in which each node is a triple ½u; s; i� with duðGjÞ 	 d̂

2 , and
each edge ð½u; s; i�; ½v; s; i�Þ satisfies edge ðu; v; jÞ 2 G, for all
j ¼ s; sþ i; :::; sþ i
 ðs � 1Þ.
We can generate the G� of the temporal graph G to com-

pute the densest subgraphs. The detailed process is shown
as follows.

According to Theorem 5, Algorithm 4 first invokes modi-
fied Algorithm 3 (see Algorithm 5 in next section) to compute
a lower bound for the s-periodic degeneracy of G (line 1).
Then, it computes the kCore ðk ¼ �d

2Þ of the de-temporal graph
G to determine the candidate nodes (line 2). Algorithm 4 uses
StrtT to record the candidate start time, DPS to record the
candidate s�DPS,DelT to record the deleted timestamps set
and a new data structure PerioN to record the periodic nodes
(line 1). Next, it enumerates t from 1 to jT j to generate a new
static graphG� which contains all the periodic nodes (lines 4-
14). In line 6, it checks whether the degree of the current node
u is no less than

�d
2 . If u’s degree meets the constraint, then the

algorithm constructs a periodic degree sequence PN for node
u (lines 7-14). Note that, it not need to compute any interac-
tions of subgraphs. Each periodic node u is recorded by
½u;PN:s; PN:i� and formated as a new node in G�, which
means that u has degree of no less than

�d
2 at periodic time

½PN:s; PN:sþ PN:i:::PN:sþ PN:i
 ðs � 1Þ� (line 12). After
all the periodic nodes are detected, the algorithm checks
whether the periodic nodes can be connected in the periodic
timestamps, and then adds the detecting edges into
G� (lines 15-18). Finally, it computes the degeneracy in G�,
reduceG� to be kCore ðk ¼ �d

2Þ ofG� (line 19), and invokes Proc.
DensestSub to mine the densest subgraphs inG� (line 20). The
following theorem shows that the connection between the
degeneracy and densest subgraphs in G� with the s-periodic
degeneracy and s�DPS in G.

Example 3. Algorithm 4 first computes the s-periodic
degeneracy d of G in Fig. 1a. Then, it checks the kCore of

de-temporal graph G with k ¼ d to find all the periodic
nodes and generates the G�. However, all the periodic
nodes whose degrees are no less than d is shown at Fig. 3
c. Then, it checks whether those nodes are connected in
the corresponding timestamps (lines 15-18) and generates
the final G�. We can invoke Proc. DensestSub once to find
a densest subgraph, which is the s�DPS according to
Theorem 6.

Theorem 6. Given a temporal graph G, parameter s and a gener-
ated graph G� of G, the degeneracy and densest subgraphs in
G� equals the s-periodic degeneracy and the s�DPS in G,
respectively.

Proof. We prove the theorem by demonstrating that the
d̂
2-Core of G� equals the combinations of d̂

2-Core of all the
s-periodic subgraphs fG0 [G00 [ :::g. Let kCoreðG�; d̂2Þ ¼
fV �; E�g and kCoreðfG0 [G00 [ :::g; d̂2Þ ¼ fV 0; E0g, according
to the definitions of G� and G0, any node ½u; s; i� in V � will
be contained in V 0 with time support fts; tsþi:::tsþiðs�1Þg.
So, V � � V 0. On the contrary, for a s-periodic subgraph G0

which contains the s�DPS, since the s�DPS will be con-
tained in d̂

2-Core of G0, any node u in the s�DPS satisfies
that duðGjÞ > d̂=2 for j ¼ s; sþ 1:::sþ iðs � 1Þ. So, V 0 �
V �. Based on Definition 8, since V 0 ¼ V �, E� equals E0.
Therefore, kCoreðG�; d̂2Þ ¼ kCoreðfG0 [G00 [ :::g; d̂2Þ.

Based on Theorem 5, the s�DPS will be in d̂
2-Core of

the periodic subgraph and the degeneracy d is the num-
ber of the maximum k satisfying kCore 6¼ ;. Therefore,
the densest graph and the degeneracy in kCoreðG�; d̂2Þ and
kCoreðfG0 [G00 [ :::g; d̂2Þwill both be the same. tu

According to Theorem 6, Algorithm 4 returns the densest
graph in G�, which is the s�DPS of G in practice.

Theorem 7 (Complexity of Algorithm 4). For a temporal
graph G ¼ ðV; EÞ with jT j timestamps, the de-temporal graph
of G is G ¼ ðV;EÞ, the time and space complexity of Algo-
rithm 4 is Oðm0n0log ðn02m0 ÞÞ and Oðm0Þ, where n0 ¼ jT j

2

s
jV j;

m0 ¼ jT j
2

s
jEj.

Proof. It needs OðjT j2jEj2Þ to compute the s-periodic
degeneracy (line 1), and OðjEjÞ to compute the d̂

2-Core of
G (line 2). In lines 4-14, in worst case, the number of peri-
odic nodes ½u; PN:s; PN:i� is OðjT j

2

s
jV jÞ, but it needs s

times (line 11) to determine a s-periodic node. So the time
complexity of constructing the s-periodic nodes are

Fig. 3. Illustration for Algorithm 4 (s=3).
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OðjT j2jV jÞ. Then, the time complexity of constructing the
edges in G� is OðjEjÞ. Furthermore, computing the dens-
est graph in G� needs Oðm0n0log ðn02m0 ÞÞ according to [12],
[13]. Putting all together, the the time complexity of Algo-
rithm 4 is Oðm0n0log ðn02m0 ÞÞ. Besides, the algorithm needs to
maintain the graph G�, sets PerioN and StrtT , which
require total Oðm0Þmemory. tu

5 APPROXIMATE ALGORITHMS

Similar to the problem of traditional densest subgraph min-
ing, the problem of mining s�DPS can also be computed
by an approximation method. The EDS [14] method follows
the peeling paradigm and achieves an approximation ratio
of 1/2 to find densest subgraph in a static graph. Also,
Samir Khuller and Barna Saha [15] show an example where
the 1/2 approximation is tight for greedy peeling. Next, we
introduce approximate algorithms for seeking s�DPS in
the temporal graph G.

According to Lemma 2, the kCore inGwith the maximum
k will be the 1/2-approximation answer for the densest sub-
graph. Recall theorem 2, there holds the following lemma.

Lemma 3. Given a temporal graph G, the maximum k of the
non-empty k�core in all s-periodic subgraphs, will be 1/2
approximation for density of s�DPS.

Proof. Suppose that Ĝ is a s-periodic subgraph which has
the largest d̂. According to Theorem 2, we have d̂=2 �
rðs�DPSÞ < d̂. Since k is maximum among the non-
empty k�core in all s-periodic subgraphs, it holds k 	 d̂.
So, rðs�DPSÞ < k. Besides, s�DPS is a s-periodic sub-
graph with the maximum density, we have rðs�DPSÞ 	
rðk�coreÞ 	 k=2. Therefore, k=2 � rðs�DPSÞ < k. tu

Based on Lemma 3, there is a question that whether the
approximation ratio is theoretically tight. The case in Fig. 4
show that the model of the k�core with maximum k is a
tight approximation algorithm in general.

Example 4. As shown in Fig. 4, suppose that the s-periodic
subgraph G0 ¼ B [ C1 [ C2:::Ck in which B is a d
D
bipartite graph and Ci is a clique of size dþ 2. Consider
that d < < D; k! þ1, the density of G0 will be
2dDþðdþ1Þðdþ2Þk
2dþ2Dþ2kðdþ2Þ ! dþ1

2 . However, the density of B is dD
dþD �

d, which is in fact the optimal solution. The approxima-
tion algorithm will output the whole graph G0, since it
starts eliminating nodes of degree d from B, and by doing
this, it never sees a subgraph with higher density. There-
fore, this example illustrates that the 1=2 approximation
is tight.

Based on theorem 2, we can search the periodic sub-
graphs to find the kCore with the maximum k to be the opti-
mal approximation for s�DPS with an approximation ratio
of 1/2. The process of the algorithm can be modified by
changing lines 8-16 in Algorithm 3, as shown in Algorithm 5
below.

Algorithm 5 first repeats the process of lines 1-7 of Algo-
rithm 3 to enumerate the periodic subgraphs. Note that,
according to lemma 1, the degeneracy of graph G is no less
than that of subgraph S which satisfies S � G. So different
from Algorithm 3, in line 7 of Algorithm 5, the DelT will be
added into time T 0 if the degeneracy of Gt0 is less than �d.
Finally, the algorithm searches all the possible periodic sub-
graphs and finds one s-periodic subgraph which has the
largest degeneracy �d, then it returns the kCore of this sub-
graph with k ¼ �d.

Recall Section 4.2, we use a generated graph G� to search
the s�DPS. However, can we use G� to find the kCore with
the maximum k in all periodic subgraphs? The answer is
yes and Algorithm 6 shows the process of usingG� to search
the s�DPS. Similar as the proof of Theorem 6, we can prove
that given a temporal graph G, parameter s and a generated
graph G� of G, the maximum kCore in G� equals the maxi-
mum kCore in all the s-periodic subgraphs.

Algorithm 6 not need to compute s-periodic degeneracy
in line 1 (it is the final answer of the algorithm). It may guess
an integer in the range of 5-10 in practice for the s-periodic
degeneracy of G. Then, the algorithm computes the candi-
date nodes set Gc by kCoreðG;�dÞ and generates periodic
nodes from Gc into G�, which are similar as lines 4-18 in
Algorithm 4. Note that, all parameter

�d
2 are modified into �d

according to lemma 1. Finally, the algorithm returns the
kCore in G� with the maximum k.

Algorithm 5. DPS�A1ðG; sÞ
Input: Temporal graph G ¼ fG1; :::GjT jg, parameter s
Output: Approximate s�DPS in G

1: Lines 1-7 in Algorithm 3;
2: if PS:l ¼ s then
3: r DegeneracyðPS:GÞ;
4: if r > �d then
5: �d r;DPS  PS:G;
6: for t0  t : jT j do
7: if DegeneracyðGt0 Þ < �d thenDelT:addðt0Þ;
8: Lines 17-18 in Algorithm 3;
9: return kCoreðDPS;�dÞ;

Algorithm 6. DPS�A2ðG; sÞ
Input: Temporal graph G ¼ fG1; :::GjT jg, parameter s
Output: Approximate s�DPS in G

1: �d guess an integer for the s-periodic degeneracy of G (5-10
in practice);

2: Gc ¼ fVc; Ecg  kCoreðG;�dÞ;
3: Lines 4-18 in Algorithm 4 (modify

�d
2 to

�d in line 6);
4: return kCoreðG�;DegeneracyðG�ÞÞ;

Theorem 8 (Complexity of Algorithms 5 and 6). For a
temporal graph G ¼ ðV; EÞ with jT j timestamps, the de-tempo-
ral graph of G isG ¼ ðV;EÞ, the time complexity of Algorithm 5

Fig. 4. Special case which achieves the 1/2 approximation [16].
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and Algorithm 6 are OðjT j2mÞ and OðjT j
2

s
mÞ, respectively. The

space complexity of Algorithm 5 and Algorithm 6 are both
Oðmþ jT j

2

s
Þ, in which n ¼ jV j;m ¼ jEj.

Proof. In Algorithm 5, line 1 needs OðjT j2mÞ time, and lines
2-7 also require OðjT j2mÞ time. Besides, it maintains the
temporal graph G, sets PerioSub and StrtT , so its space
complexity is Oðmþ jT j

2

s
Þ.

In Algorithm 6, line 2 takes OðmÞ time, and line 3

requires OðjT j
2

s
mÞ since the generated graph G� may

have OðjT j
2

s
mÞ edges. Besides, it maintains the generated

graph G�, sets PerioN and StrtT , thus its space complex-

ity is OðjT j
2

s
mþ jT j

2

s
Þ ¼ OðjT j

2

s
mÞ. However, we can release

memories of some periodic nodes who are not in the

k�core so its memory overhead is acceptable in practice.tu

6 EXPERIMENTS

In this section, we conduct extensive experiments to evalu-
ate the proposed algorithms. We implement seven different
algorithms for comparison:

� MPC [8] is a comparison algorithm for computing
the maximum clique in the s-periodic subgraphs.

� PERC [9] is a comparison algorithm that searches
periodic communities in the temporal networks and
can optimize a model based on periodic behavior.

� DPS�B is a baseline which computes the s�DPS
using the framework shown in Algorithm 1, but it
enumerates all periodic subgraphs to find the dens-
est subgraphs.

� DPS�P is the implementation of Algorithm 3 which
searches the s�DPS and uses the s-periodic degen-
eracy to prune the considering periodic subgraphs.

� DPS�Pþ is the implementation of Algorithm 4
which finds the s�DPS by searching a generated
graph and requires less computation of set intersec-
tion and maximum flowmining.

� DPS�A1 is the implementation of Algorithm 5 which
uses the pruning algorithm similar to Algorithm 3
for finding the approximate s�DPS.

� DPS�A2 is the implementation of Algorithm 6 which
uses a generated graph similar to Algorithm 4 for
finding the approximate s�DPS.

All algorithms are implemented in Python and all the
experiments are conducted on a server of Linux kernel
4.4 with Intel Core(TM) i5-8400@3.80GHz and 32 GB
Memory. When quantity measures are evaluated, the test
was repeated over 5 times and the average is reported
here.

Datasets. We evaluate our algorithms on 12 different real-
world temporal networks. The detailed statistics of datasets
are summarized in Table 1, where dmax denotes the maxi-
mum number of temporal edges associated with a node, and
jT j represents the number of snapshots. All the snapshots
are simple, undirected and unweighted graphs. Chess1 is a
network that represents each pair of chess players playing
game together from 1998 to 2006. Lkml1 is a communication
network of the Linux kernel mailing list from 2001 to 2011.
Enron1 is an email communication network between employ-
ees of Enron from 1999 to 2003. DBLP2 is a collaboration net-
work of authors in DBLP from 1940 to Feb. 2018. Youtube3

(YTB for short) and Flickr1 (FLK) are friendship networks of
users in Youtube and Flickr, respectively. MathOverflow

3 (MO),
AskUbuntu3 (AU) are temporal networks of interactions on the
stack exchange web site mathoverflow.net and askubuntu.
com, respectively.WikiTalk3 (WT) is a temporal network repre-
senting the interactions among Wikipedia users. Unlike MO,
AU, WT collect snapshots by day, MO2, AU2, WT2 are trans-
formed graphs of MO, AU, WT which generate snapshots by
hour, so their jT j aremuch larger.

Goodness Metrics. Most existing metrics (e.g., modularity)
for measuring the dense subgraph quality are tailored for
traditional graphs. Motivated by density, cohesiveness, cluster-
ing coefficient and separability [17], we introduce two good-
ness metrics evaluating communities for temporal graphs.
Let C be a dense subgraph computed by different
algorithms.

Average Separability (AS) captures the intuition that a good
community is well-separated from the rest of the network,
meaning that they have relatively few across edges between

C and the rest of the network: AS , ½ jfðu;v;tÞ2E:u2C;v2Cgj=jCjjS¼fðu;v;tÞ2E:u2C;v =2 Cgj=jSj�,
which measures the ratio between the internal average den-
sity and external average density.

TABLE 1
Statistics of Datasets

Dataset jV j ¼ n jEj ¼ m0 jEj ¼ m dmax jT j Time scale

Chess 7,301 55,899 63,689 233 101 month
Lkml 26,885 159,996 328,092 14,172 96 month
Enron 86,836 296,952 501,510 2,156 87 month
DBLP 1,729,816 8,546,306 12,007,380 5,980 78 year
YTB 3,223,589 9,376,594 12,218,755 129,819 225 day
FLK 2,302,925 22,838,276 24,690,648 28,276 197 day

MO 24,759 187,986 294,293 5,556 2,351 day
AU 157,222 455,691 549,914 7,325 2,614 day
WT 1,094,018 2,787,967 4,010,611 214,518 2,321 day

MO2 24,759 187,986 350,798 6,500 56,409 hour
AU2 157,222 455,691 631,151 8,373 62,732 hour
WT2 1,094,018 2,787,967 4,702,689 233,313 55,690 hour

1. http://konect.cc/
2. https://dblp.uni-trier.de/xml/
3. http://snap.stanford.edu/data/index.html
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Average Density (AD) builds on intuition that good commu-
nities arewell connected. Itmeasures the fraction of the tempo-
ral edges that appear between the nodes in C: AD ,
½
P

vi2C
degGC ðviÞ
jCj �, where degGC ðviÞ denotes the number of tempo-

ral edges that are associatedwith vi in the communityC.

Average Cohesiveness (AC) characterizes the internal struc-
ture of a community. Intuitively, a good community should
be internally well and evenly connected, i.e., it should be rel-
atively hard to split a community into two sub communities.
We characterize this by the conductance of the internal cut
and adapt it into temporal graph: AC ,

P
Ci2C maxS�Ci

fðSÞ,
where fðSÞ is the conductance of S measured in the induced
temporal subgraph by S.

Average Clustering Coefficient (ACC) is based on the prem-
ise that network communities are manifestations of locally
inhomogeneous distributions of edges, because pairs of
nodes with common neighbors are more likely to be con-

nected with each other: ACC ,
P

vj2C
#edgeðNðvj;CÞÞ

dCðvjÞ
=jCj, where

#edgeðNðvj; CÞÞ is the number of temporal edges in C
whose two end nodes are vj’s neighbors and dCðvjÞ denotes
the number of temporal edges that are associated with vj in
the dense subgraph C.

Table 2 shows the brief introductions of the above evalu-
ation metrics. As shown, AS measures the ratio between the
number of temporal edges inside community C and the
number of temporal edges outside C; AD measures the ratio
between the sum of nodes’ degrees inside community C
and the number of nodes in C; AC is the maximum number
of cut edges which can split community C into S and C n S;
ACC is the average value of the ratio between the number of

common neighbors of vj in C and the number of temporal
degree of vj inside C. Unless otherwise specified, in the fol-
lowing effectiveness testings, the evaluation values are nor-
malized so each maximum single value is 1.

6.1 Efficiency Evaluation

Exp-1. Running Time of All the Algorithms. Table 3 evaluates
the running time of MPC, PERC, DPS�B, DPS�P , DPS�Pþ,
DPS�A1 and DPS�A2 with parameters d ¼ 3. Similar results
can also be observed with the other parameter settings.
From Table 3, it is obvious that DPS�Pþ is much more effi-
cient than MPC, PERC on all datasets. This is because
DPS�Pþ can compute the s�DPS in Oððn0Þ2logn0Þ where
n0 ¼ jT j

2

s

 jV j, which is much quicker than the current algo-

rithms MPC and PERC. Compared with DPS�B and DPS�P ,
DPS�Pþ is also much faster because it prunes the enumera-
tions of the periodic subgraphs and it overcomes some limi-
tations as discussed in Section 4.2. However, since the time
complexity of the algorithm DPS�Pþ is proportional to the
square of jT j, the algorithm still has some performance defi-
ciencies when jT j is too large. We can see that it needs about
10 thousands seconds to run DPS�Pþ in WT2, but it only
needs about 1 thousand seconds in WT (WT2 have same
nodes as WT, but WT2 generate snapshots by hour so it has
lager jT j). Moreover, the two approximation algorithms
DPS�A1 and DPS�A2, perform better than the best exact
algorithm DPS�Pþ. It is the reason that DPS�A1 and
DPS�A2 not need to invoke the maximum flow computa-
tion, which is quite time-consuming in practice. However,
DPS�A2 is much faster than DPS�A1 on almost all datasets,
because DPS�A1 needs to compute the interactions of the
snapshots. According to Table 3, our proposed algorithms
are efficient to mine the s�DPS in large temporal networks.
For example, on YTB, DPS�Pþ takes 226.92 seconds and the
approximation algorithm DPS�A2 only consumes 67.43 sec-
onds. On WT, we can see that MPC takes 2,203 seconds, and
PERC takes more than 3 hours, but our proposed DPS�Pþ
takes merely 1,445 seconds and MBCþ only takes 57 seconds.
These results confirm that our proposed algorithms are very
efficient on large real-life temporal networks.

Exp-2. Running Time of Varying the Parameter s. Fig. 5
shows the running time of DPS�B, DPS�P and DPS�Pþ
during varying parameter s on Enron and DBLP. Similar
results can also be observed on other datasets. It can be seen
from Fig. 5 that DPS�Pþ is faster than DPS�B and DPS�P
under all parameter settings. In Fig. 5b, we can see that the
running time of DPS�Pþ decreases faster when s ranges
from 3 to 7 than s ranges from 7 to 9. This is because that

TABLE 2
Evaluation Methods for the Dense Subgraphs in Temporal Graph

Metric Formulation Intuition

AS
h
jfðu;v;tÞ2E:u2C;v2Cgj=jCj
jS¼fðu;v;tÞ2E:u2C;v =2 Cgj=jSj

i
#temporal edges inside community C/ #temporal edges outside C

AD

hP
vi2C

degGC ðviÞ
jCj

i
sum of nodes’ degrees inside community C / #nodes in C

AC
P

Ci2CmaxS�Ci
fðSÞ maximum cut-edges which can split community C into S and C n S

ACC
P

vj2C
#edgeðNðvj;CÞÞ

dC ðvjÞ
=jCj avgvj2C( #common neighbors of vj/ #temporal degree of vj inside C)

TABLE 3
Running Time (s) of Different Algorithms (INF: > 3 hours)

Dataset MPC PERC DPS�B DPS�P DPS�Pþ DPS�A1 DPS�A2

Chess 11.45 21.45 8.32 1.32 0.78 0.30 0.40
Lkml 35.06 45.23 20.32 10.4 9.21 3.23 2.36
Enron 56.19 104.2 78.32 33.41 13.54 4.21 3.25

DBLP 405.23 1602.32 572.54 287.32 155.34 42.28 28.95

YTB 306.53 2653.23 1123.13 559.52 226.92 72.28 67.43

FLK 417.53 3234.23 1323.32 766.4 322.21 172.28 78.52
MO 835.06 6713.241 2445.14 1000.23 434.19 30.15 13.71

AU 1203.32 10232.23 3121.31 1599.78 766.89 53.32 23.36

WT 2203.32 inf 8021.31 4865.87 1445.23 130.15 57.65
MO2 inf inf inf 4508.23 1834.19 430.15 116.45

AU2 inf inf inf 8599.78 3458.89 613.32 238.24

WT2 inf inf inf inf 10543.32 1030.15 557.65
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the time complexity of the algorithm DPS�Pþ is inversely
proportional to s, and the pruning technique will be less
powerful when s is smaller. With the increase of s, the run-
ning time of all the three algorithms decreases. These results
confirm that the time complexity of DPS�B, DPS�P and
DPS�Pþ are inversely proportional to s.

Exp-3. Scalability of All the Algorithms. Fig. 6 shows the
scalability of DPS�B, DPS�P and DPS�Pþ on WT dataset.
Similar results can also be observed on other datasets. We
generate ten temporal subgraphs by randomly selecting
10%-100% temporal edges or 10%-100% timestamps, and
evaluate the running times of DPS�B, DPS�P and DPS�Pþ
on these subgraphs. As shown in Fig. 5, the running time
increases smoothly with increasing number of edges or size
of jT j. These results suggest that our proposed algorithms
are scalable when handling large temporal graphs.

Exp-4. Memory Overhead. Table 4 shows the memory
usage of DPS�P and DPS�Pþ on different datasets. We can
see that the memory usage of DPS�Pþ is higher than the
size of DPS�P , because DPS�P only needs to store PerioSub
in Algorithm 1 and 3 but DPS�Pþ needs to store all the
periodic nodes PerioN in Algorithm 4. In practice, when
executing Algorithm 4, we can release memories of some
periodic nodes who are not in the k�core (line 19). There-
fore, on large datasets, the memory usage of DPS�Pþ is
typically smaller than ten times the size of the temporal
graph. For instance, on WT, DPS�Pþ consumes 2,923.2MB
memory while the graph needs 354.3MB. These results indi-
cate that DPS�B, DPS�P and DPS�Pþ all achieve nearly
linear space complexity, which confirms our theoretical
analysis in Section 4.

6.2 Effectiveness Evaluation

Exp-5. Effectiveness of MPC, PERC and DPS�Pþ Fig. 7 shows
the four goodness results of the model MPC, PERC and
DPS�Pþ with s ¼ 3 on all the datasets. We only choose
DPS�Pþ for comparison because DPS�B, DPS�P and
DPS�Pþ all output s�DPS so they have the same results.
Intuitively, a good periodic community should have high

AS, AD, AC and ACC values. As can be seen, DPS�Pþ is obvi-
ously better than the two baselines in terms of AS, AD, AC
and ACC metrics. The reason is that DPS�Pþ seeks the most
densest periodic subgraphs which certainly have the best
average density (AD). In addition, with the higher inner den-
sity, DPS�Pþ is hard to be separated and it has higher AS,
AC and ACC. We can also find that PERC is much better than
MPC in terms of all the metrics. This is because that the real

Fig. 6. Scalability of the algorithms.

TABLE 4
Memory Overhead of DPS�P and DPS�Pþ

Graph in
Memory

Memory
of DPS�P

Memory
of DPS�Pþ

Chess 3.5MB 13.2MB 58.2MB
Lkml 20.1MB 47.4MB 146.2MB
Enron 53.3MB 127.6Mb 353.2MB
DBLP 1,064.5MB 2,532.2MB 4,324.4MB
YTB 718.5MB 1,561.5MB 3,425.8MB
FLK 1,412.1MB 3,424.2MB 5,802.1MB
MO 14.32MB 46.68MB 108.45MB
AU 64.22MB 167.50MB 580.8MB
WT 354.3MB 1074.56MB 2,923.2MB
MO2 51.53MB 45.23MB 92.75MB
AU2 155.96MB 150.32MB 459.2MB
WT2 1342.3MB 1023.23MB 2,923.2MB

Fig. 7. Effectiveness of the algorithms.

Fig. 5. Running time of varying the parameter s.
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periodic cliques in the temporal networks are always too
small, so the MPC can not output a subgraph of large size.
As shown in Figs. 7a, 7b, 7c, and 7d, we can observe that the
AS, AD, AC and ACC values in FLK are larger than in the other
datasets, this is because the dataset FLK ranks top in terms of
data size and density. Interestingly, the AS, AD and ACC in
Lkml are obviously better than in the other datasets (expect
in FLK), but the AC value in Lkml is slightly larger. It is the
reason that although Lkml has larger density, the graph size
in Lkml is small such that the conductance of the internal cut
is not large in Lkml.

Exp-6. Effectiveness of DPS�Pþ, DPS�A1 and DPS�A2.
Table 5 shows the density results of the approximation algo-
rithms DPS�A1 and DPS�A2 V.S. the exact algorithm
DPS�Pþ. The first column r1 is the density of the output of
algorithm DPS�Pþ, the second column r2 is the density of
the output of algorithm DPS�A1 (or DPS�A2 since they out-
put the same results), and the third column is the percent-
age value of r2=r1. We can see that in all the testings, the
density of the output of DPS�A1=DPS�A2 achieve 1/2
approximation since all r2=r1 are inside the range of 50%�
100%. In practice, the approximation algorithms perform
great since they almost achieve the 80% percentage of the
optimal answer. The above results indicate the theoretical
analysis in Section 5 and show that the approximation algo-
rithms achieve better than the theoretical approximation
ratio in the real datasets.

Exp-7. Case Study on HOSPITAL. The dataset HOSPITAL
4 is

the temporal network of face-to-face contacts between
patients and health-care workers in a hospital at Lyon,
France, from Monday, December 6, 2010 at 1:00 pm to Fri-
day, December 10, 2010 at 2:00 pm. It includes 46 health-
care workers (the doctors, nurses and administrative staffs
are labeled as MED, NUR and ADM, respectively) and 29
patients (labeled as PAT). In this experiment, we set the
time interval to be one hour. Next, we will show mining the
densest periodic subgraph can help to seek the periodic
treatments in the HOSPITAL dataset. In real-life, the treat-
ment of a disease often takes several courses of treatments,
so the interactions between doctors and patients are often
periodic. Therefore, mining the periodic and densest sub-
graph can help to find the information about these periodic

treatments. At first, as can be seen in Fig. 8a, we seek the
densest subgraph in the de-temporal graph, which is a most
possible community in the interaction networks between
the health-care workers and the patients. In Fig. 8a, as we
do not consider the temporal information, the resulting
community involves almost all the users (the dataset con-
tains 75 users but Fig. 8a contains 70 users), so we are hard
to identify the activity of the possible periodic treatments in
the networks. However, in Fig. 8b we seek the densest s-peri-
odic subgraph with s ¼ 5, which shows a subgraph with 5
nodes of ADM, 3 nodes ofMED, 6 nodes ofNUR and 7 nodes
of PAT. We also find that the health-care workers and the
patients are periodically contacted at December 8, 2010 from
10:00 am to 14 pm. Therefore, the densest s-periodic sub-
graph in Fig. 8b is more likely to be a periodic treatment at
December 8, 2010 among doctors, nurses administrative
staffs and patients in the hospital. The results indicates that
our model can find the periodic medical behavior in the hos-
pital contact temporal network.

7 RELATED WORK

In this section, we summarize the existing related algo-
rithms for identifying densest periodic subgraphs in the
temporal graph, which is related to the references below.

Densest Subgraph in Static Graph. Finding the densest sub-
graphs in static graph is a well-studied graph mining prob-
lem. It is well known that Goldberg’s parametric flow
algorithm [10] can find the maximal densest subgraph in
polynomial time by invoking Oðlog nÞ max-flow computa-
tions. Moreover, as shown in [14], a linear time greedy algo-
rithm proposed by Asashiro et al. [18] can obtain a 1/2-
approximation densest subgraph. However, when we restrict
the size of the densest subgraph [15], [19] or redefine the con-
sidered density [20], the problem becomes NP-hard. For
example, one recent work [21] proposes a nearly-linear-time
algorithm to appropriately restrict the size of the densest sub-
graph by defining a concave function. Moreover, if the den-
sity is redefined as d0 ¼ jEj=C2

jV j, finding the subgraph with
the largest d0 is to find the maximum clique, which is known
to be NP-hard [22]. Another interesting variant of the densest
subgraph model, termed optimal quasi-clique, based on a
new definition of the density function, is also NP-hard [23].
In addition to the above studies, there are related work on
other models based on various graph properties [11], [13],
[16], [24], [25], [26], [27], [28]. In our work, we study the

TABLE 5
Effectiveness of DPS�Pþ, DPS�A1 and DPS�A2 (s ¼ 3)

r1 ¼ rðDPS�PþÞ r2 ¼ rðDPS�A1=DPS�A2Þ r2
r1

Chess 5.6 4.5 80.4%
Lkml 9.4 8.4 89.4%
Enron 8.3 7.2 86.8%
DBLP 13.2 11.2 84.9%
YTB 15.3 13.6 88.9%
FLK 14.8 12.4 83.8%
MO 8.5 6.9 81.2%
AU 7.6 5.3 69.7%
WT 9.4 7.3 77.7%
MO2 4.5 3.5 77.8%
AU2 3.7 3.1 83.7%
WT2 7.5 6.0 80.0% Fig. 8. Case study on HOSPITAL.

4. http://www.sociopatterns.org/datasets/hospital-ward-
dynamic-contact-network/
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problem of mining the densest subgraphs which occur in
temporal graphs periodically and proposed unprecedented
targeted solutions.

Densest Subgraph in Non-Static Graph. Recently, some
researches study the problem of mining densest subgraph
in non-static graph. Some of the studies maintain the dens-
est subgraph in a highly dynamic graphs [29], [30], [31]. By
capturing the dynamic property, we can have fast algo-
rithms for approximation factors better than 1/2. One
approach towards this is to sparsify the graph in a way that
maintains subgraph densities within a factor of 1� �, and
run the exact algorithm on the sparsifier [32], [33]. A second
approach is via numerical methods to solve positive LPs
approximately [34], [35] which can find an (1� �)-approxi-
mate solution. Others, including our work, focus on mining
the densest subgraph with temporal features [36], [37], [38],
[39], [40], [41]. For example, Liu et al. [36] studied the prob-
lem of finding densest lasting-subgraphs in large dynamic
graphs, which considered the time duration of the subgraph
pattern. Ma et al. [37] investigated the densest subgraph
mining problem in weighted temporal graphs. Rozenshtein
et al. [39] searched for a partition of the timestamps into k
non-overlapping intervals, so that the intervals span sub-
graphs with maximum total density. Miyauchi et al. [40]
proposed the model of robust densest subgraph with sam-
pling oracle in temporal networks. Chu et al. [41] devised
an algorithm which can find a subgraph that accumulates
its density at the fastest speed in temporal networks. Unlike
all these studies, in our work, we propose a model which
aims to find densest periodic subgraphs in temporal graphs.
Based on our model, we are able to identify all the periodic
and densest regions of a temporal graph in polynomial
time, which cannot be found by the above models.

Other Community Models in Temporal Graph. In addition to
the above two categories, there are several related works on
other cohesive subgraph mining models in temporal
graphs [42], [43], [44], [45], [46], [47], for example: (i) Temporal
Core Model: Galimberti et al. [42] proposed temporal span-
cores, in which each node has minimum degree in a specific
time interval; Wu et al. [48] studied the core decomposition
problem in temporal networks; Yu et al. [49] computed the
historical k-cores in the graph snapshots over the time win-
dow; Li et al. [43] developed an algorithm to detect persistent
cores in a temporal graph. (ii) Temporal Clique Model: Qin
et al. [8] proposed a model for seeking periodic cliques in a
temporal graph. Yang et al. [50] studied a problem of finding
a set of diversified quasi-cliques from a temporal graph. (iii)
Temporal Subgraph Model: Yang et al. [51] proposed an algo-
rithm to detect frequent changing components in temporal
graph; Huang et al. [52] investigated the minimum spanning
tree problem in temporal graphs; Gurukar et al. [53] pre-
sented a model to identify the recurring subgraphs that have
similar sequence of information flow. However, the above
works do not study the problem of mining densest periodic
subgraph in temporal graphs.

8 CONCLUSION

In this work, we study the issues of mining densest peri-
odic subgraphs, which is the most densely connected
periodic behavior in a temporal graph. We propose a

novel model, called densest s-periodic subgraph, to char-
acterize the densest periodic subgraph in a temporal
graph. To find it, we first develop a basic algorithm
which can enumerate all the periodic subgraph and then
invoke maximum flow algorithm to search the densest
subgraph. Then, we present an improved algorithm with
several novel pruning techniques to improve the effi-
ciency. Subsequently, we develop a greedy algorithm
which can compute the approximate densest s-periodic
subgraph. The experimental results on several real-life
temporal networks demonstrate the efficiency, scalability
and effectiveness of our algorithms.

There are a lot of problems to be solved in the future, to
name but a few: (i) We can observe that a slight insertion or
deletion of edge may not change the periodic subgraph. As
a result, in the future we can study the problem of main-
taining the densest periodic subgraph in fully dynamic
graphs. (ii) We can consider to find the densest subgraph
which is quasi-periodic. In real life, the events are always
quasi-periodically, which means the time intervals between
two adjacent events are near to a constant. For example,
every-year birthday parties are usually celebrated with an
interval of 365 days, but there also has an interval of 366
days when considering the leap years; monthly meetings
are usually held at intervals of 28 to 31 days, because the
number of days included in each month is not fixed, but
we usually hold monthly meetings on a fixed day. As a
result, it is significant to mining the quasi-periodic densest
subgraph in the temporal network, since it can represent
more periodic behavior in real life.
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